
9/5/2007

1

Introduction to VBA
Programming with

ArcObjects

GeoTREE CenterGeoTREE Center
University of Northern Iowa

Geography
July 18, 2007

Workshop Outline
ArcObjects/VBA overview (9:15-9:45)
Customizing ArcMap interface (9:45 – 10:30)
Visual Basic for Applications (VBA) environment (10:30-11:00)
Morning break (11:00-11:15)
VBA programming concepts (11:15-12:15)p g g p ()
Lunch (12:15-12:45)
ArcObjects overview (12:45-1:30)
Using ArcObjects

Using ArcObjects 1: Map Display (1:45 – 2:45)
Afternoon Break (2:45 – 3:00)
Using ArcObjects II: Selecting, Geoprocessing (3:00 – 4:00)

ArcObjects/VBA OverviewArcObjects/VBA Overview

Warning

Developing ArcGIS functionality and
understanding ArcObjects is complicated

This workshop is a basic introduction to help you
develop ArcGIS customizationsdevelop ArcGIS customizations

ArcObjects/VBA Overview
ArcGIS provides a large amount of
functionality
However users often want to harness that
functionality in different ways than is possible y y p
out of the box

Develop customizations to carry out work-flow
tasks
Develop customized spatial modeling operations
Combine multiple steps into a single customized
tool

ArcObjects
Set of components or building blocks on which the
scaleable ArcGIS framework is built
Developed by ESRI using C++ as classes
Basically everything you see and interact with in any
ArcGIS application is an ArcObjectArcGIS application is an ArcObject

Maps
Layers
Points
Tables
Fields
Rasters
Buttons

9/5/2007

2

Map

Layer

Graphic
Point

Button

Polygon

Table
Field

ArcObjects
There are a huge number of ArcObjects
Accessible through various
programming/development enviroments

Focus today on VBAy

Almost impossible to get to know all ArcObjects
A strong background using the applications
(ArcMap, ArcCatalog, etc.) important
Learn how to navigate to get to proper ArcObject

Visual Basic for Applications
(VBA)

VBA is a development environment that is
provided with ArcGIS (also with Microsoft
Word Excel Powerpoint etc) with which youWord, Excel, Powerpoint, etc.) with which you
can access ArcObjects
It is a simplified version of Visual Basic
For customizing applications

Other Development
Environments

Visual Basic
C#
C++
Delphi
others

Start VBA Interface

Scripting vs. development
environment (ArcObjects)

Scripting for geoprocessing in ArcGIS
Python, VBScript, etc.

Scripting calls on ArcObjects to do processing
Scripting calls upon one main ArcObjectp g p j
Geoprocessing ArcObject

Development environments (VBA, VB, C# etc.)
Allow access to all ArcObjects
Developing customized interfaces
Distributable customizations

9/5/2007

3

Scripting vs. Arcobjects
(VBA,etc.)

Scripting with Python
Clip feature class with
another feature class

ArcObjects with VBA
Clip feature class with
another feature class
Add clipped layer to map
Symbolize the new layerSymbolize the new layer
Create a map layout with
the new layer
Print the map

Customizing ArcMap InterfaceCustomizing ArcMap Interface

Customizing ArcMap Interface

You can control the look and feel of the
ArcMap interface

Add/remove existing controls
Create new controlsCreate new controls
Can associate VBA code to newly created tools,
buttons and menu items

A full ArcMap Interface

A minimalist ArcMap Interface

Toolbars
Buttons, tools

Buttons make something happen immediately
Tools ork b clicking on the control and then clicking in the map

Control Types in ArcMap

ButtonTool

Tools work by clicking on the control and then clicking in the map
display

Menus
Menu items (really are just buttons)

Combo boxes (e.g. Map scale)
Provide user dropdown choice

Editbox (rarely used)
To enter and report information

9/5/2007

4

Customization Demonstration and
ExerciseExercise VBA Development EnvironmentVBA Development Environment

VBA Development
Environment

Accessed through ArcMap or ArcCatalog
Tools for developing code and user interfaces

i.e. modules for code and forms for user
interfacesinterfaces

A sophisticated program in itself that takes
time to learn
Lots of functionality and tools to help you
more efficiently write code

Projects Code Module Procedure
Visual Basic Editor
Window

Object Box Procedure Box

Forms
• User can design custom interfaces using
the form designer

Check box

VBA Environment

You can store customized controls and codes
in either an .mxd project, in the Normal.mxt or
in one of your own template.
If you save these customizations in theIf you save these customizations in the
Normal.mxt they will be available every time
you open ArcMap (only on your computer).
Today we are only going to work saving
customizations into a specific .mxd.

9/5/2007

5

VBA Development Environment
Demonstration and ExerciseDemonstration and Exercise VBA Programming ConceptsVBA Programming Concepts

Comments

For your sake and others it is important to put
comments in your code
Comment enough so when you return to the
code later it will make it much easier for youcode later it will make it much easier for you
to understand
Comments begin with ‘ and are shown in red
‘Get the number of layers that are in the map
intLayerCnt = pMap.LayerCount

Intellisense

VBA has functionality to finish code for you
While typing a variable, method, procedure,
etc., clicking Ctrl+Spacebar will finish code
A l f i bl dAn example for a variable named
strStateName

Type strSt and click Cntrl+Spacebar and VBA will
finish strStateName for you

Very useful to guard against typos

Variables
Variables are used to store values
It is encouraged practice to ‘declare’
variables

Dim intMyNumber as IntegerDim intMyNumber as Integer
This tells the program what kind of data type
the variable is and provides clarity
One programming convention has the
variable name prefaced by an abbreviation
for what the data type is

Data types
Numbers

Integer – whole numbers from -32768-32767
Long – large whole numbers
Double – all numbers (very large or with decimals)(y g)

Strings – text
Boolean – true or false
Dates – hold dates
Variant – a generic data type that can hold
any data type

9/5/2007

6

Basic data types and
abbreviations

Integer – int
intTemp = 32

Long – lng
lngLength = 45000

Double – dbl
dblArea = 1254.56

String – str
strStreet = “Clay Street”

Boolean – bln
blnCancel = True

Date – dat
Variant - var

Setting variables
You set the variables in an assignment
statement

Ex. 1
Dim lngX as Longg g
lngX = 120000

Ex. 2
Dim dblAnnualTax as Double
Dim dblParcelValue as Double
dblParcelValue = 100000
dblAnnualTax = 0.05 * dblParcelValue

Conditional logic

It is common to have to account for different
conditions in programming
Use conditional logic
M t i If ThMost common is If Then
If intTempF <= 32 then

msgBox “It might snow”
Else

msgBox “It might rain”
End if

Looping
A program often needs to loop through a collection
of objects
First way to do it is with a For….Next
For intNum = 1 to 10

msgBox “The number is “ & intNum
Next I

ArcMap Example
For i = 0 to pMap.LayerCount - 1

msgBox “The layer name is “ & pMap.Layer(i).Name
Next i

Looping
Second way to do it is with a Do….Until or
Do…While
Do While intCnt < 50

msgBox intCnt
intCnt = intCnt + 1intCnt = intCnt + 1

Loop
ArcMap Example

Do Until pRow Is Nothing
dblArea = pRow.Value(2)
Set pRow = pCursor.NextRow

Loop

Procedures

Procedures hold blocks of code that carry out
specific functions
We have seen event procedures

E M B tt Cli kE.g. MyButton_Click
Two types

Sub procedures
Functions

9/5/2007

7

Sub procedures
Can be a control event procedure or a stand-alone
procedure that is called from somewhere else
Should be named logically

E.g. ReturnMapRastersg p

When you create a control in ArcMap or Form then
each sub procedure linked with an event is
automatically named

‘ZoomOut_Click’ (ArcMap button)
‘cmdGetMapName_Click’ (form command button)

Call sub example
Public Sub ShowName()

Dim strName as string
Call GetName(strName)
msgBox “The name is “ & strName

End Sub

Public Sub GetName(strName as string)
strName = InputBox(“Enter Name”, “Name”)

End Sub

Functions

Functions take input, process the input, and
return output
Many built-in functions in VBA

I t(2 6) t 2Int(2.6) returns 2
Len(“Long”) – returns 4 (i.e. length of string)

Functions have a single output that can be
string or numeric
You can define your own functions

Function example
Public Sub ReportTax()

………
dblPropVal = 80000
dblTotalTax = CalculateTax(dblPropVal)
msgBox “The tax due is “ & dblTotalTax

End Sub

Public Function CalculateTax(dblPropVal) as Double
CalculateTax = 0.075 * dblPropVal

End Function

Objects
Mentioned ArcObjects before
There are other objects

Forms and all controls are objects
Other objects such as Collections and ArraysOther objects such as Collections and Arrays

Each of these objects has properties, events
and methods

Property is a characteristic or attribute
Events are user actions that happen to an object
Methods are things an object can do

Properties

Properites are characteristics of an object
Can set properties in form designer window

9/5/2007

8

Properties

Can also set form and command properties
through code
Use the ‘object.property’ syntax

dL N C ti “Fi t L N ”cmdLayerName.Caption = “First Layer Name”
cmdLayerName.Enabled = False
txtLayerName.Text = “”
frmLayerName.Width = 200

Events

Forms and controls have a number of
potential events they react to

cmdLayerName.Click
txtLayerName ChangetxtLayerName.Change
frmLayerName.Initialize

Methods

Things that an object can do
frmLayerName.Hide
cmdLayerName.Move 25, 50
cboLayerName AddItem “Iowa Counties”cboLayerName.AddItem Iowa Counties

Other VBA objects have methods
E.g. Collection objects are lists to which can hold
different variables

rasterColl.Add pRaster
intRasterCnt = rasterColl.Count

Other Tips

To get help put your cursor on a method or
property and click F1

Overview of ArcObjects

Object Oriented Programming
OOP is centered around objects
OOP programs have objects that hold data,
have properties, respond to methods, and
raise events
E.g. a professor’s program to calculate
grades

A student object might hold name, midterm grade,
etc.
A SemGrade method might calculate semester
grade

9/5/2007

9

Object Oriented Programming

Two tiers of OOP
Low-level is creating and using objects (properties
and methods) from existing classes (client)
Upper-tier of creating the classes themselvesUpper tier of creating the classes themselves
(server) and writing code for properties and
methods

We will mainly look at the client side today
i.e. We are going to make use of existing objects
(VBA and ArcObjects)

ArcObjects
Set of components or building blocks on which the
scaleable ArcGIS framework is built
ArcObjects come from classes designed by ESRI
programmers
Basically everything you see and interact within anyBasically everything you see and interact within any
ArcGIS application is an ArcObject

Maps
Layers
Points
Tables
Fields
Rasters

Map

Layer

Graphic
Point

Button

Polygon

Table
Field

Programming Interfaces
In order to work with ArcObjects you need to learn
how to access objects with interfaces
An interface is a logical grouping of properties and
methods for a class
Interfaces start with the letter I and variables are
prefaced with p
Dim pMap as IMap
Can have multiple interfaces on a single class
All ArcObjects classes have interfaces

Hypothetical Dog Class
Example

Dog

IDog
Breed: String
Bark

A single interface (IDog) on a dog class which
has a single property (Breed) and method (Bark)

Dog class example (cont.)

To declare and use and IDog object from the
dog class
Dim pDog as IDog
Set pDog = New DogSet pDog = New Dog
pDog.Breed = “Poodle”
msgBox “The dog is a “ & pDog.Breed

9/5/2007

10

ArcObjects example

Map

IMap
Name: String
AddLayer

The Map class has an interface named IMap and
through that interface you can get/set name of
the map and you can add a layer.

Multiple Interfaces

As mentioned before, can be multiple
interfaces on the same class
In order to access properties and methods
from multiple interfaces you might set up twofrom multiple interfaces you might set up two
variables that are equal to the same object

This is called a QueryInterface or QI
Following is a hypothetical example

Will see ArcMap related examples as we go on

Hypothetical Dog Class
Example (Two interfaces)

Dog

IDog
Breed: String
Bark

A I t

Monkey

IMonkey
Species: String
Climb

IAnimal Age: Integer
Eat

Two interfaces with different properties and
methods on the Dog object
The IAnimal is an interface on different classes

IAnimal Age: Integer
Eat

Dog class example (cont.)
To declare and use and IDog object from the
dog class
Dim pDog as IDog
Dim pAnimal as IAnimal
Set pDog Ne DogSet pDog = New Dog
Set pAnimal = pDog ‘QueryInterface
pDog.Breed = “Poodle”
pAnimal.Age = 10
msgBox “The dog is a “ pDog.Breed & “ and she is “

pAnimal.Age & “ years old.”

Object Model Diagrams
There are many (thousands) of ArcObjects
classes
In order to get to a given object you might
have to navigate through many othersg g y

MxDocument - Map – Layer
There are a set of diagrams (pdf files) which
provide a graphical representation of these
objects, interfaces, methods, properties, and
relationships

Object Model Diagrams

OMD’s
Designed with Unified Modeling Language
Very detailed
Have to learn how to read like a roadmap
Can be complicated and dauntingCan be complicated and daunting
Learn how to read and only get to what you
need
OMD’s organized by categories (i.e.
Geometry, Geodatabase, ArcCatalog, Spatial
Analyst)

9/5/2007

11

OMD Key

There is a key on every OMD explaining
classes and relationships

Symbols
Get/Put (read/write)

Get (read)

P t (it)Put (write)

Method

Interface

Put by reference (use Set ..)

OMD’s online

Go to
http://edndoc.esri.com/arcobjects/9.2/welcome.ht
m
Panel on right of window click on ArcObjectsPanel on right of window click on ArcObjects
Library Reference at bottom
Choose the category you think that you think your
ArcObject might be found and click on it
Click on the ….Object Model Diagram and it will
open up the OMD

Class Types
There are different kinds of classes

Abstract classes – no objects created from these
Classes (regular) – made or gotten from other
classes
Coclasses – can create objects from coclasses

E.g. our Dog class earlier could create a new Dog
object.
Can also get objects of coclasses from other objects
that return them

E.g. a new Map object is returned from another class with
the .FocusMap method

Class Types Symbology

9/5/2007

12

Class Relationships

Associations
Instantiation – one class has a method that
creates new object from another class
I h it l i t fInheritance – a class uses as an interface
from a more general class
Composition – objects in one class (‘whole
class’) control lifetime of another class (‘part
class’)

Association and inheritance

Map

IMap

*

Layer(s) associated
with Map

Layer

ILayer

FeatureLayer

IFeatureLayer

with Map

FeatureLayer(s)
use interfaces of Layer
(inheritance)

Name

Code Examples
Association
Dim pMap as IMap
Dim pLayer as ILayer
……… ‘pMap set herep p
Set pLayer = pMap.Layer(0)
Inheritance
Dim pFeatureLayer as ILayer
Set pFeatureLayer = New FeatureLayer
pLayer.Name = “Iowa Counties”

Instantiation (create)

FeatureClass

IFeatureClass Search

A FeatureCursor object
is created from a

FeatureCursor

IFeatureCursor

is created from a
FeatureClass object
using the Search
method

Composition (create)

MxDocument

IMxDocument FocusMap: IMap

An MxDocument can
have multiple maps If

Map

IMap

have multiple maps. If
you delete the
MxDocument then the
Maps are deleted

*

Miscellaneous OMD stuff

A balloon like this indicates you need to go
to another OMD

This syntax indicates the
Layer (in Index: Long): ILayer

y
Layer property requires a
variable of type Long and
returns an ILayer object

9/5/2007

13

Code Example

Instantiation
………… ‘pFeatureClass would be set in here
Dim pFeatureCursor as IFeatureCursor
Set pFeatureCursor = pFeatureClass Search(Nothing True)Set pFeatureCursor = pFeatureClass.Search(Nothing, True)

Two special objects

To use VBA for ArcMap a map document
must be already be open
Two objects are already in use at this point

A li ti bj tApplication object
Called Application

MxDocument object
Called ThisDocument

MxDocument

With an .mxd open saved as ThisDoc.mxd

Application.Caption

MsgBox ThisDocument.Title

ArcObjects and VBA Help

In the VBA editor to get Visual Basic Help go
to Help – Microsoft Visual Basic Help

To get help for ArcObjects click F1 on and
interface in the code module windows

E.g. put your mouse on ‘IMap’ and click F1

Example ArcObjects Help

Tells which OMD

Method help

9/5/2007

14

Code example

Using ArcObjects: Map
Display, Layers, Feature
Classes, and Tables

Practical Examples – Get Map

Get the MxDocument and the active map or
data frame
The following code is probably going to be
used in most programs you writeused in most programs you write
Dim pMxDoc as IMxDocument
Dim pMap as IMap
‘get the map
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap

MxDocument

FocusMap: IMapIMxDocument

Get layer from Map
Dim pMxDoc as IMxDocument
Dim pMap as IMap
Dim pLayer as ILayer
‘get the map
Set pMxDoc = ThisDocumentSet pMxDoc ThisDocument
Set pMap = pMxDoc.FocusMap
‘get the first layer in the map
Set pLayer = pMap.Layer(0)
msgBox pLayer.Name

Map

Layer (in Index:Long): ILayerIMap

Find and move a layer
……….
‘get layer count, use that to get bottom layer,

‘move that layer to the top
intLayerCnt = pMap LayerCountintLayerCnt = pMap.LayerCount
Set pMoveLayer = pMap.Layer(intLayerCnt – 1)
pMap.MoveLayer pMoveLayer, 0

Map

MoveLayer (in Layer:ILayer, in Index:Long)IMap

Create and add a new feature layer
……….
Dim pSFWSFact as IWorkspaceFactory
Dim pFeatWS as IFeatureWorkspace
Dim pFeatureClass as IFeatureClass
Dim pFeatureLayer as IFeatureLayer
‘set the workspace
Set pSFWSFact as new ShapefileWorkspaceFactory
Set pFeatWS = pSFWSFact.OpenFromFile(“D:\VBAWshop”, 0)Set pFeatWS pSFWSFact.OpenFromFile(D:\VBAWshop , 0)
‘open feature class
Set pFeatureClass = pFeatWS.Open(“IowaRivers.shp”)
‘create layer, set its feature class, set name, and add to map
Set pFeatureLayer = new FeatureLayer
Set pFeatureLayer.FeatureClass = pFeatureClass
pFeatureLayer.Name = “Iowa Rivers”
pMap.AddLayer pFeatureLayer

9/5/2007

15

Create and add a new feature
layer

WorkspaceFactory

OpenFromFile (in FileName: String,
In hWnd: OLE_Handle): IWorkspace

IWorkspaceFactory

Workspace

OpenFeatureClass (in String):
IFeatureClass

IFeatureWorkspace

FeatureLayer

FeatureClass: IFeatureClassIFeatureLayer
FeatureClass

IFeatureClass

Zoom to Extent of Layer
………
Dim pExtent as IEnvelope
‘get the layer and it’s extent
Set pZoomLayer = pMap.Layer(0)p y p p y ()
Set pExtent = pZoomLayer.AreaOfInterest
‘zoom to the extent and refresh the view
pMxDoc.ActiveView.Extent = pExtent
pMxDoc.ActiveView.Refresh

Zoom to layer extent

Layer

AreaOfInterest: IEnvelopeILayer

IEnvelope

XMin: DoubleIEnvelope

MxDocument

ActiveView: IActiveViewIMxDocument
ActiveView

Extent (in: IEnvelope)
IActiveView

Tables and feature classes

Table

ITable

Row

IRow

*

Composed

FeatureClass

IFeatureClass

Feature

IFeature

*

Inherits
p

Tables

Open from an IWorkspace object
Use an AccessWorkspaceFactory to open a
personal geodatabase table
Use a ShapefileWorkspaceFactory to open a dbfUse a ShapefileWorkspaceFactory to open a .dbf
table
ExcelWorkspaceFactory to open an .xls table
…others???

Open Table (.dbf)
'declarations
Dim pSFWSFact As IWorkspaceFactory
Dim pTableWS As IFeatureWorkspace
Dim pOpenTable As ITable
Dim intRowCnt As Integer

'set the workspaceset the workspace
Set pSFWSFact = New ShapefileWorkspaceFactory
Set pTableWS = pSFWSFact.OpenFromFile("D:\temp\julytrash\VBAwshop", 0)

'open the table
Set pOpenTable = pTableWS.OpenTable(“IowaCounty_Population.dbf")

'get the number of rows and report
intRowCnt = pOpenTable.RowCount(Nothing)
MsgBox intRowCnt

9/5/2007

16

Open Table (Personal
Geodatabase table)

'declarations
Dim pAccessFact As IWorkspaceFactory
Dim pTableWS As IFeatureWorkspace
Dim pOpenTable As ITable
Dim intRowCnt As Integer

'set the workspaceset the workspace
Set pAccessFact = New AccessWorkspaceFactory
Set pTableWS = pAccessFact.OpenFromFile("D:\VBAWshop\Iowa.mdb", 0)

'open the table
Set pOpenTable = pTableWS.OpenTable("IowaCountyPopulation")

'get the
intRowCnt = pOpenTable.RowCount(Nothing)
MsgBox intRowCnt

Using ArcObjects II:
Cursors, Selection Sets,
Geoprocessing

Cursors

Cursors are used to retrieve a set of records
You can step through a cursor row by row in
a forward direction
Th t th l t d d i htThese are not the selected records you might
see through an attribute query
Very useful for getting and setting values in
records row by row

Table cursor example
……..
Dim pCursor as ICursor
Dim pQF as IQueryFilter
Dim pRow as IRow
Dim intFldPos as integer
‘get the field position of the County name field
intFldPos = pOpenTable.FindField(“COUNTY”)intFldPos pOpenTable.FindField(COUNTY)
'set up the cursor using a query filter
Set pQF = New QueryFilter
pQF.WhereClause = "[TOT_POP] > 100000"
Set pCursor = pOpenTable.Search(pQF, True)
Set pRow = pCursor.NextRow
‘loop through and list counties with Pop > 100000
Do Until pRow Is Nothing

MsgBox pRow.Value(intFldPos)
Set pRow = pCursor.NextRow

Loop

Tables and feature classes

Row

IRow

ICursor

ICursor
NextRow

Value

Table

ITable

QueryFilter

IQueryFilter
Search

Selection Set
'select the counties that have a population > 100000

'Declarations
Dim pCountyFLayer As IFeatureLayer
Dim pCountyQF As IQueryFilter
Dim pCountyFSel As IFeatureSelection

……………………………………………..
'get the layer and its feature class
Set pCountyFLayer = pMap.Layer(0)

'set up the query filter
Set pCountyQF = New QueryFilter
pCountyQF.WhereClause = "Tot_Pop > 100000"

'set feature selection to the layer and refresh the map
Set pCountyFSel = pCountyFLayer ‘QI
pCountyFSel.SelectFeatures pCountyQF, esriSelectionResultNew, False
pMxDoc.ActiveView.Refresh

9/5/2007

17

Tables and feature classes

FeatureLayer

IFeatureLayer
FeatureClass

FeatureSelection

IFeatureSelection
SelectFeatures

QueryFilter

IQueryFilter

Spatial Processing

There is no central location for accessing
spatial processing objects
IBasicGeoprocessor

Cli Di l I t t M U i tClip, Dissolve, Intersect, Merge, Union, etc.
ITopologicalOperator

Buffer, Clip, Cut, Simplify, etc.
ITopologicalOperator2

ConstructBuffers, ClipToDomain

Buffer Example
'This sub should buffer the first feature layer in map with graphics

'Declarations
………..
Dim pTopoOperator As ITopologicalOperator
Dim pFeatureCursor As IFeatureCursor
Dim pFeature As IFeature
Dim pElement As IElement
Dim pGraphicsContainer As IGraphicsContainer
………..
'set the graphics container
Set pGraphicsContainer = pMap
'get the layer and feature class
………..
'set up feature cursor, loop through and buffer each feature, add graphic to map
Set pFeatureCursor = pBufferFC.Search(Nothing, True)
Set pFeature = pFeatureCursor.NextFeature
Do Until pFeature Is Nothing

Set pTopoOperator = pFeature.Shape
Set pElement = New PolygonElement
pElement.Geometry = pTopoOperator.Buffer(2500)
pGraphicsContainer.AddElement pElement, 0
Set pFeature = pFeatureCursor.NextFeature

Loop
'refresh the view
pMxDoc.ActiveView.Refresh

