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Abstract 

 

With cities experiencing faster warming rates than their surroundings (Stone 

2007) and two thirds of the global population projected to be living in urban areas by 

2050 (United Nations 2019), studies on temperature patterns in the urban environment 

have the potential to address concerns regarding cities’ livability. While recent progress 

has been made in understanding urban heat spatial heterogeneity, more research in a 

variety of urban settings is necessary. While there have been studies conducted in the 

U.S. Midwest (Kunkel et al. 1996; Rajasekar and Weng 2009; and Gallo et al. 1993), no 

studies have examined the pattern of temperature in urban areas using high spatial and 

temporal resolution methods across multiple different sized cities in the state of Iowa. 

The goal of this research was to examine the spatial pattern of temperature across 

multiple cities of different sizes in the state of Iowa utilizing mobile temperature sensors 

along with high spatial and temporal resolution methods that leverage geospatial data on 

morphometric and natural features.  

Air temperature data were collected in ten urban areas in Iowa during afternoon 

(4-5 p.m.), evening (9-10 p.m.), and night (4-5 a.m.) offering the necessary data to 

generate predictive temperature models based on natural and man-made features found in 

the urban fabric. Utilizing a Random Forest algorithm, predicted surface models, which 

consider Canopy Cover, Canopy Density Metric, Building Height, Building Volume, and 

NDVI as independent variables showed an R² between 0.879 and 0.997, with 20 out of 24 

models falling into a range of  R² higher than 0.95. When examining the relationship 

between air temperature and income, all values with statistical significance presented a 
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weak to moderate negative correlation, which is consistent with the literature that 

suggests that areas with higher income experience less heat than areas with lower income, 

while the correlation between non-ethnic groups showed a very weak to weak positive 

correlation, which is interpreted as in some locations, ethnical minorities are more likely 

to experience heat than white population. 

This research, funded by the Iowa Economic Development Authority Iowa Energy 

Center Grant Program, aims to benefit communities in urban areas across Iowa. The data 

collected, including temperature measurements and models, will be made publicly 

available to assist government officials and a diverse group of professionals in mitigating 

urban heat and improving living conditions. A deeper understanding of urban heat 

patterns will lead to preventive measures and improved techniques to enhance the overall 

quality of life for individuals and communities. 
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Chapter 1 

 

Introduction 

Rising temperatures and extreme heat events have been seen across the globe in 

recent decades leading to increased concern across the world (Vicedo-Cabrera et al. 

2021). Mean annual heatwave season lengths were longer in 2010s as compared to 1980s, 

with the most pronounced exposure increases being in the lowest-quartile income regions 

(Alizadeh et al. 2022). Urban areas specifically, home to a majority of the world’s 

population, have experienced higher temperatures caused by the built environment 

morphology (Environmental Protection Agency 2022). In 2022, headlines or stories such 

as ‘U.S. cities are heat islands boiling under deadly extreme temperatures. It’s only 

expected to get worse’ as seen on CBS News (Cohen 2022) were common. The high 

probability of extreme heat events has been brought up in many studies. Fischer et al. 

(2021) revealed that week-long heat extremes that break records by three or more 

standard deviations are predicted to be two to seven times more likely to happen in 2021-

2050 and three to 21 times more in 2051-2080 when compared to the last three decades. 

Dahl et al. (2019) indicated the increase in global temperatures poses a secondary 

problem: the number of people affected by extreme events. Compared to the last three 

decades of the 20th century, the annual number of days with heat indices exceeding 100F 

and 105F are projected to double or triple by the mid-21st century (2036-2065) and affect 

more than 25% of the US by area compared to only 1% from 1971-2000. The National 

Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and 
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Space Administration (NASA) found that that 2010-2019 was the hottest decade ever 

recorded and the world’s five warmest years have all occurred since 2015 (NOAA 2020). 

With cities experiencing faster warming rates than rural areas (Stone 2007), major 

public health problems (e.g., chronical diseases, death) can arise, affecting a larger 

portion of the population, including those with higher socioeconomic vulnerability. 

According to Wong et al. (2013), more casualties have resulted from heat waves than 

other hazardous weather events such as hurricanes, floods, and tornadoes combined. 

While mortality rates caused by heat-related illnesses have dropped since 1980 in the 

USA, in certain places like Paris, an increase of 0.5°C above the average minimum 

nighttime temperature could double the risk of death in the elderly (Wong et al. 2013). In 

a study compromising 108 US urban areas, Hoffman et al. (2020) found that 94% of 

studied areas displayed elevated land surface temperatures in formerly redlined areas 

(historical discriminatory real estate practices) with approximately 2.6° C warmer 

temperatures than non-redlined area. It is also observed that socioeconomically 

vulnerable groups such as Native Hawaiian and Other Pacific Islander (NHPI), 

Hispanics, African Americans, as well as young children often closely linked to higher 

temperatures and even heat events (Voelkel et al. 2018; Wong et al. 2013).   

The concept of contrasting temperature regimes between urban and surrounding 

areas goes back historically and has been studied with more modern techniques and data 

for several decades. The phenomenon of urban heat has been studied for over 150 years 

(Oke 1982). Indeed, Gartland (2011) cited papers dating back as far as 1833 by Howard 

(England) and 1855 by Emilien Renou (France). In 1958, the term known as Urban Heat 

Island (UHI) was coined by the British climatologist Gordan Manley when he compared 
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London’s snowfall pattern to the city’s surrounding outlying districts. According to The 

United States Environmental Protection Agency (2022), an UHI is defined as an 

urbanized area that experiences higher temperature than outlying areas. The main factors 

contributing to UHI include reduced natural landscapes in urban areas, urban material 

properties, urban geometry, heat generated from human activity, and variation in weather 

(e.g. cloud coverage and wind patterns). Figure 1 illustrates conceptually and figuratively 

the potential patterns of spatial heterogeneity in air and surface temperature across urban 

areas. This figure, while being useful, is an oversimplification, illustrating the 

complicated nature of the urban fabric and the associated temperature regimes.  

 

Figure 1 
Heat Island Effect Diagram. United States Environmental Protection Agency 2022 
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Studies evaluating urban temperatures using remote sensing analysis techniques 

(Balázs et al. 2009; Saydelles 2005; Yu et al. 2020) have been common over the last 

couple of decades. According to Zhou et al. (2018), the first known surface urban heat 

island (sUHI) study using satellite imagery was published by Rao (1972) and subsequent 

studies have continued often using Landsat and other satellite imagery for measures of 

land surface temperature (LST). A systematic review of regional and urban heat island 

conducted by Degefu et al. (2022) found that greater than 50% of studies used Landsat 

while 36% used MODIS (Degefu et al. 2022). Such studies based on remote sensing 

imagery are sometimes supplemented using stationary thermometers in selected locations 

or mobile sensor systems to collect temperature across urban land cover gradients 

(Alcoforado 2010).  

While leveraging satellite imagery provides the most affordable way to collect 

data covering large areas and across multiple urban areas, these techniques do suffer from 

limited spatial resolutions (e.g., 30 m for Landsat, 250 m for MODIS). Imageries of such 

resolution are unable to capture the highly detailed spatial heterogeneity of complicated 

urban matrices. Another challenge due to the sparse temporal resolution is the inability to 

describe temperature changes throughout a day, which “is necessary for understanding 

how fast specific areas of the city heat and cool” (Voelkel and Shandas 2017, 2).  To 

address this shortcoming, recently low-cost sensor technologies and high-resolution 

geospatial data have been used to provide highly detailed spatial data capturing spatial 

heterogeneity across and within the urban area, as seen in studies like Voelkel and 

Shandas (2017), which made use of mobile sensor systems to record detailed 

temperatures across multiple times on a very hot day in Portland coupled with high 
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resolution Light Detecting and Ranging (LiDAR) data (1m). According to Stewart 

(2000), the use of mobile thermometers enables very high-resolution temperature data 

collection, thus allowing for a better understanding of small variations of the temperature 

found within the urban area (Szymanowski and Kryza 2012).  

The improvements in remote sensing technologies, including higher spatial 

resolutions, is a major benefit to study temperature variation in different areas of the 

urban environment. However, they are still far from the capabilities and fine resolution of 

mobile temperature sensors. Temporal resolution of traditional remote sensing platforms 

also does not provide the flexibility that mobile sensors can provide. The ability of data 

collection in different times of the day, for consecutive days, without the interference of 

unstable atmospheric conditions and cloudy skies is considered a great advantage over 

traditional remote sensing technology.  

 

Research Problem 

 

While recent progress has been made in understanding urban heat spatial 

heterogeneity, more research in a variety of urban settings would be useful. The majority 

of previous studies have focused on larger urban areas (e.g., Voelkel and Shandas 2017; 

Shandas et al. 2019) and often have only considered one study area at a time. While there 

have been studies conducted in the U.S. Midwest (Kunkel et al. 1996; Rajasekar and 

Weng 2009; and Gallo et al. 1993), no studies have examined the pattern of temperature 

in urban areas using high spatial and temporal resolution methods across multiple 

different sized cities in the state of Iowa. 
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Research Goals, Objectives 

The primary goal of this research is to monitor and to model urban heat pattern in 

the state of Iowa by using high spatial and temporal resolution mobile sensors and 

geospatial data. The specific objectives are: 

 

1. To collect very high-resolution temperature data across selected urban areas 

using mobile sensors in the state of Iowa. 

2. To model detailed temperature variation patterns among different Iowa urban 

areas using selected morphometric and natural features. 

3. To examine the temperature variation across urban neighborhoods with 

varying socio-demographic characteristics. 
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Chapter 2 

Literature Review 

Health and Economic Issues Related to Urban Heat 

In 1950, only 30% of the world’s population lived in urban areas. By 2007 the 

United Nations estimated that the urban population surpassed the rural population 

globally, with more than 4 billion people living in the cities. By the year 2050, it is 

projected that more than two thirds of the global population will be living in urban areas. 

This population trend can be seen worldwide, but urbanization has been faster in less 

developed regions compared to historical trends in more developed countries. Regions 

such as Latin America and the Caribbean reached staggering levels with 80% of 

populations living in urban areas in 2015 (United Nations 2019).  

Average daytime temperatures in urban areas in the USA are up to 4°C higher 

than average temperatures in outlying areas (U.S. EPA 2022), and in extreme cases can be 

up to 10°C compared to the rural countryside (Heaviside et al. 2017). In a study 

conducted by Kunkel et al. (1996), the authors examined one of the worst heat waves that 

happened in the Midwest in the last century, which caused hundreds of fatalities across 

the central and eastern United States in mid-July 1995. Fatalities were reported in 19 

states, 87% of those occurred in the Midwest, and 65% of all deaths took place in 

Chicago. In the event that lasted for 4 consecutive days, the daily average temperature 

exceeded 36°C over some of the areas, with the maximum apparent temperature reaching 

48.1°C (118.6°F) in Chicago, the highest temperature since 1916. Several health 

problems can be attributed to extreme heat ranging from exacerbation of minor existing 

conditions to increased risk of hospitalization and death (Basu 2009).   



8 
 

Other problems associated with high temperatures include higher electricity 

demand and the costs related to it. According to Santamouris et al. (2014), although 

electricity demands can vary according to location, for each additional 1°C electricity 

usage can increase in 8.5%, causing a financial burden to people with socio-economic 

vulnerability and possibly overloading the energy grid due to extensive use of thermal 

controlling devices (e.g., air conditioning). 

Studies such as Voelkel et al. (2018), Hattis et al. (2012), and Shandas (2009) 

explored the connection between climate and social justice. Voelkel et al. (2018), used 

three factors to evaluate the vulnerability to heat – exposure, sensitivity, and adaptive 

capacity – and found minority populations were significantly correlated with heat 

exposure and with low adaptive capacity. They thus suggested it is imperative for 

governments to address social disparities in heat resilience efforts. Hattis et al. (2012) 

provided evidence that minority groups such as elderly population (65+ years old), 

African Americans, and people without a high school diploma were the most vulnerable 

to heat-related mortality in the state of Massachusetts from 1900 to 2008. Shandas (2009) 

discussed how certain social groups were disproportionately living in the hottest areas of 

Portland, Oregon. He also observed not only low-income, but elderly and specific ethnic 

groups were at higher risk from heat waves. 

Heat events can impact different parts of the globe, they are not exclusive to urban 

areas. However, as seen in several studies, urban areas are more likely to experience 

higher temperatures than non-urban areas, posing a bigger threat to already marginalized 

groups. 
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History and Advances in Urban Heat Studies 

Studies on mapping the spatial variation of temperature on the planet can be 

tracked back as early as more than 2 thousand years when it was first documented by 

Aristotle and Plutarch on 6 B.C (Bailey 1964). In 1817, Alexander von Humboldt created 

the first isothermal map, presenting evidence that not only latitudes and the amount of 

radiation received from the sun could fully explain the variation in temperature in 

different parts of the planet (SmithsonianMag 2019). Later in 1884, the German-Russian 

climatologist Wladimir Köppen created the model for climate classification we use to this 

day, presenting 5 main climate groups, subdivided by the amount of precipitation and 

heat that occur in each of those areas (Chen and Chen 2013). 

Studies for examining temperatures in dense human settlements can be traced 

back to around 150 years ago according to Oke (1982). Specifically, observations related 

to the idea of UHI have been well documented throughout history, being first published 

in 1833 by Luke Howard (Stewart 2010). In his observations, temperatures in the city of 

London were warmer than its countryside. In France, during the second half of the 19th 

century, Emilien Renou (1855, 1862) made similar discoveries when measuring the 

differences in temperature between urban and rural areas in the country.  

In the United States, the first studies examining urban heat patterns started in the 

first half of the 20th century (Gartland 2011), carried out by the American climatologist J. 

Murray Mitchell (1953, 1961). Although already a widely known concept among 

scholars, it was only in 1958 that the term urban heat island was first used by the British 

climatologist Gordan Manley, when studying the effects of snowfall on the temperatures 

in London and its outskirts. A UHI can be defined as urban and suburban areas presenting 
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a higher air and surface temperature than their surroundings (Gartland 2011).  In addition,  

Tim Richard Oke, one of the most eminent figures on urban climate studies, the effects of 

high temperatures in urbanized areas are “probably both the clearest and the best 

documented example of inadvertent climate modification” (Oke 1987, 288). 

     Stone (2007) examined the temperature trends in the largest 50 urban areas 

across the USA, comparing the variation in urban and rural temperatures over 50 years.  

The study found that 58% of the sampled urban areas experienced a mean decadal 

increase in heat island intensity, while 42% experienced a decrease with decreases found 

in northeastern US and Ohio River Valley with southern US generally showing increases. 

When considering only absolute mean temperature for each area, 12 urban and 12 rural 

areas experienced a decrease in temperature over the period of 50 years. Cities such as 

Buffalo, Sacramento, Los Angeles, Jacksonville, and Orlando were some of the cities that 

presented the cooling trends in both, rural and urban areas. Cities such as Fresno, 

Pittsburgh, Rochester, and Syracuse, experienced cooling trends in their urban areas, 

while the rural areas of those cities presented warmer temperatures over time (1951 – 

2000). 

An important part of understanding the intensity of urban heat has to do with the 

landscape features and processes that influence the magnitude of heat. Paravantis et al. 

(2015, 4548), as part of a thorough urban heat island intensity review article, summarized 

as follows: ‘latitude and elevation; climate characteristics such as wind velocity, cloud 

cover and rainfall; surface morphology and view to the sky; vicinity to bodies of water 

such as the sea; distance from industrial sites; degree of urbanization (i.e. population 

density); vegetation (i.e. presence of open and green areas, tree canopy etc.); land usage, 
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surface albedo and presence of impervious surfaces (and their heat balance); urban 

geometry and presence of urban canyons; characteristics of urban residences including 

whether dense/sparse, distribution and consumption of heating or cooling energy and 

ventilation of buildings; as well as road traffic intensity and urban air pollution’. Other 

characteristics such as roughness (Oke 1987), pavement composition (Gartland 2011) and 

anthropogenic heat flux generated by cultural activities (Oke 2009) have also been shown 

to be associated with higher urban temperatures.  

Advances in technology and techniques such as increases in spatial resolution 

from satellite and airborne-based imagery and other geospatial data have allowed 

researchers to examine the influence that features other than those mentioned above have 

on the variation of temperature, including the shape of tree canopy (Gkatsopoulus 2017), 

and tree shade (Yu et al. 2020). According to Chun and Guhathakurta (2016), the type of 

vegetation also plays a role in regulating urban temperatures. Stone and Norman (2006) 

pointed out that if the suburban areas of Atlanta/Georgia were to reduce their lawn areas 

by 25% and replace them with trees, the contribution of latent heat to the increase of 

temperatures would be reduced by 13%.  

Even though studies have proven the mitigating effects of bodies of water on 

urban heat (Oke 1987; Chun and Guldmann 2012; Paravantis et al. 2015), some authors 

are cautious in stating that bodies of water can strongly regulate the air temperature due 

to their high thermal inertia (Chun and Guhathakurta 2016). Hathway and Sharples 

(2012) highlighted the cooling effects close to rivers, lakes, and seas, and found 

differences in temperature up to five degrees Celsius above the river and nearly 100m 

from the riverbanks compared to the rest of the urban areas. They also showed that the 
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level of cooling provided by bodies of water depended on the vegetation and the local 

urban form, with higher levels of cooling on the bank in areas with high levels of 

vegetation. They also found the cooling was noticeable up to 30m from the bank, but 

negligible after 40m from the river. 

Mirzaei (2015) found that highly populated areas, which tend to develop either 

vertically or horizontally, can not only work as a blockage against urban ventilation but 

also absorb more solar radiation due to the composition of artificial materials, leading to 

reduced long-wave emission to sky, therefore contributing to warmer temperatures in 

urban areas. On the other hand, buildings can cast shadows to offer respite from the heat 

during the day (Chun and Guhathakurta 2016) and to prevent direct radiation from the 

sun (Hathway and Sharples 2012). Complemented by other elements of urban geometry 

such as roughness (the ratio between the perimeter of the building and the perimeter of a 

circle of a similar area) and compactness (a function of density, plot ratio, land-use and 

travel proximity), sky view factor is also an important factor that correlates negatively 

with urban heat according to Kusaka and Kimura (2004), since “canyon structure with 

small sky view factor keeps higher surface temperature during the night” (Kusaka and 

Kimura 2004, 75). 

Atmospheric conditions are also regarded as important factors on the variation of 

temperature in the urban environment. Stewart (2000) examined those conditions and 

their effects in the city of Regina in the Canadian province of Saskatchewan. In his study, 

the author measured wind speed, cloud cover/Boltz factor, atmospheric pressure, and 

vapor pressure happening right before, during, and after temperature collection. 

Temperature data were collected between 2 and 3 hours after sunset and acquired through 
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mobile sensors in 31 different locations throughout the city and outskirts. The time was 

chosen to (1) allow for the seasonal change in the time of sunset, and (2) coincide with 

the expected time of daily maximum heat island intensity as documented in the literature 

by Oke (1982). Through the use of linear and non-linear regression techniques, Stewart 

determined that urban temperature in Regina is highly sensitive to changes in cloud and 

wind conditions, and relatively insensitive to changes in humidity and atmospheric 

pressure. Disregarding any weather event or atmospheric condition prior to heat events, 

wind speeds seem to have a higher influence than any other independent variable for 

explaining variability in nocturnal UHI, however, if weather conditions preceding heat 

events are considered, cloud cover supersedes wind speed as the most important control 

of nocturnal UHI. 

While measuring air temperature is commonly used to evaluate variation of 

temperature within the urban environment, the study of surface temperature is also used 

to identify the phenomena (Zhou et al. 2018). The evaluation of temperature patterns in 

urban areas can be done by examining radiative temperature differences between urban 

and non-urban surfaces or by accessing the variation of air temperature in the urban 

canopy level.  

Investigating further and elaborating on the difference between measuring surface 

temperature versus air temperature, Gartland (2011) presents a list of the most common 

methods which are used in measuring temperature in the urban environment: fixed 

stations, mobile traverses, remote sensing, and vertical sensing. Remote sensing is 

perhaps the most common for measuring surface temperature, while fixed stations, 

mobile traverses, and vertical sensing, are usually used to measure air temperature. Oke 
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(1987) suggested that measuring air temperature using either climate stations or mobile 

traverses is the most clear-cut way of evaluating urban heat. According to the author, 

none of the methods to identify variations in temperature in urban areas is mutually 

exclusive, in fact, different methods and techniques can be used as complimentary tools 

for measuring temperature patterns or even validating models.  

As mentioned earlier, the use of satellite imagery-derived land surface 

temperature (LST) has been common across a variety of geographic regions. Studies by 

Saydelles (2005), Yu et al. (2020), and Chen et al. (2020) broadly used LST to estimate 

the variation of temperature in different urban settings. The variation in surface 

temperature was identified through the use of thermal satellite images from Landsat 7 

ETM+ (Saydelles 2005), Landsat 5 TM (Yu et al. 2020), and ASTER (Chen et al. 2020), 

with spatial resolutions of 60 meters, 120 meters, and 90 meters respectively. Examining 

the myriad of satellites/sensors utilized for the purpose of understanding temperature 

variation across different areas, Zhou et al. (2018) provided a comprehensive review of 

the main sensors used to this day. In a large sample of studies (N=492), the authors 

searched for peer-reviewed journals in English language from 1972 to August 2018 using 

the ISI Web of Science and Google Scholar databases and set a combination of keywords 

that look for temperature pattern in the urban environment through the use of satellite 

imagery. The mean number of papers during the latest years (2015 – 2020) related to the 

search was 75.7 papers per year, while before the year 2005 this number was smaller than 

4 papers per year. The Landsat, MODIS, and ASTER satellites were used in 418 papers, 

showing the importance of those satellites/sensors to urban studies worldwide. 
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According to Zhou et al. (2018), each constellation of satellites presents different 

advantages. For Landsat satellites, the main advantages are that imagery can be freely 

obtained and the swath size of 185km x 185km “is big enough that it allows scientists to 

process a single image to investigate an entire urban environment” (Zhou et al. 2018, 8). 

The main benefit of MODIS is its quality-checked data products generated by the 

MODIS team, on top of the convenient swath dimensions (2330km by 10km), allowing 

for research of large study areas. Finally, ASTER, the third most frequently used data in 

the reviewed studies, provides imagery of daytime and nighttime, and since 2015 is 

available to all users at no cost.  

Although imagery derived from satellites is still widely used in different studies 

and provides invaluable benefits due to its large coverage and possibly low cost for vast 

areas, their limitations call for other methods to capture the detailed spatial heterogeneity 

of urban environments. Limited spatial and temporal resolution, being constantly affected 

by atmospheric conditions, and the high costs when utilized for small areas can be 

enough limitations that could sway the collection method to other alternatives such as use 

of mobile traverses. 

The use of mobile traverses to measure air temperature in cities and regions of the 

world in the past decades has grown supplementing measurements in fixed locations. The 

temperature measuring devices are usually either mounted on cars (Saaroni et al. 2000; 

Balász et al. 2009; Voelkel and Shandas 2017; and Shandas et al. 2019), motorbikes 

(Yokobori and Ohta 2009), bicycles (Shandas et al. 2019) or utilizing non-vehicle mobile 

devices (Stewart 2000; Sakakibara and Matsui 2005; Szymanowski and Kryza 2012). 

Studies conducted by Stewart (2000), Sakakibara and Matsui (2005), and Yokobori and 
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Ohta (2009) made use of temperature data collected in pre-defined locations/sites, while 

those by Saaroni et al. (2000), Balász et al. (2009), Yokobori and Ohta (2009), Voelkel 

and Shandas (2017), and Shandas et al. (2019) used data measured at points along pre-

defined routes at specific planned times throughout the day. The studies mentioned above 

successfully utilized fine-resolution data from mobile devices that helped to explain 

temperature patterns across different areas in the urban environment. 

For vehicle-mounted devices the position of the device varied in distance to the 

ground, however, consistency can be seen in elevating the device over at least a meter 

from the ground in order to not be affected by surface temperature or the heat generated 

by the car engine. Stewart (2000) took measurements from distances up to 20m from the 

car to avoid external heat sources including the influence of car engine heat.  

With the capability of generating precise, three-dimensional information about the 

shape of the Earth and its surface characteristics, LiDAR is also widely used to 

understand the urban landscape and can produce an array of data, ranging from spatial 

distribution of land cover, tree canopy, and information on building structure such as 

height or volume. Chun and Guldmann (2012) used LiDAR data paired with land surface 

temperature (LST) for delineating the urban characteristics and factors that enhance or 

mitigate urban heat. In the study, the main geospatial data derived from LiDAR were 

building heights, which combined with GIS building footprints and a digital elevation 

model (DEM) helped to develop a 3D model of the city concluding that 3D urban 

characteristics are critical at a neighborhood scale in influencing temperature variations.  

Yu et al. (2020) focused on exploring the cooling effect of tree shade in urban 

landscapes through the use of LiDAR data, land surface temperature data derived from 
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Landsat TM imagery, and the employment of spatial analysis techniques to understand 

the spatiotemporal patterns of the temperatures in Tampa and New York City (NYC). 

Results showed that shade cast by urban trees can lower LST, however, the effects of tree 

canopy (in % coverage) in Tampa had a higher effect on mitigating temperature than in 

NYC (r² = - 0.64 vs r² = - 0.53), while impervious surface presented almost the same 

magnitude in both cities (r² = 0.60 in Tampa, r² = 0.61 in New York City). 

The role of LiDAR in identifying horizontal and vertical tree canopy structures 

can also be seen in Chen et al. (2020, 1). They employed 2d grid cells with a 2m spatial 

resolution in processing the LiDAR point cloud data. LiDAR data and ancillary imagery 

were used to derive raster metrics for tree canopy which they used in comparison to 

daytime and nighttime LST data. Ground points derived from LiDAR cloud data were 

also used to create a Digital Elevation Model (DEM). Their results showed that tree 

canopy had stronger influences on LST during the day than at night, while the most 

important independent factors that affected spatial variation of LST were percent cover of 

tree canopy, and mean tree canopy height during the day, and percent cover of tree 

canopy, and maximum height of tree canopy at night. 

With higher spatial and temporal resolution methods of data collection, studies 

like the ones conducted by Voelkel and Shandas (2017), and Shandas et al. (2019) were 

of great influence in the conception of this study. The authors used mobile traverse data 

collection methods to build extensive datasets (i.e., thousands to hundreds of thousands) 

of temperature measurements that were subsequently used to study and model 

temperature variation across different areas of the urban environment, leading to an 

increased understanding of urban heat patterns in different cities in the United States. 
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Indeed, the protocols that began in these studies have been further carried on through 

National Oceanic and Atmospheric Administration-funded projects over several years 

including in 14 cities across the United States in summer 2022 (NOAA 2022a).  

Voelkel and Shandas (2017) used statistical techniques such as multiple linear 

regression (MLR), classification regression tree (CART) combined with multiple linear 

regression, and random forest (RF) to model and predict urban heat in the city of Portland 

based on a wide variety of urban form metrics derived from LiDAR, building footprint 

vector, and imagery data. They found the random forest to produce the highest predictive 

power, varying from r²=0.8199 for temperature data collected in the afternoon (3 p.m.) to 

r²=0.9793 for temperature data collected in the morning (6 a.m.). For temperature 

collections that took place in the evening (7 p.m.), the model presented a predictive 

power of r²=0.9715. 

Shandas et al. (2019) published a similar study by employing a satellite pixel-

based modeling approach for the creation of a continuous surface of predicted 

temperatures across three different US cities: Richmond, Washington D.C., and 

Baltimore. They agreed that common patterns could be seen across all three locations: 

“forested and otherwise vegetated areas are cooler than urbanized areas; lower-density 

urban areas are often cooler than high-density urban areas; morning high temperatures are 

always lower than afternoon and evening low temperatures; the greatest relative 

concentration of heat is in the morning; major arterial roadways are visible in all UHI 

surfaces, though they are often amplified in the evening” (Shandas et al. 2019, 6). Using 

a combination of ground-based measurements, spectral data from the Sentinel-2 

constellation (LULC), spatial analysis, and machine learning techniques (Random Forest 
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regression) the models showed a high predictive power of no less than r²=0.9644 for all 

nine models (morning, afternoon, and night for each of the 3 study areas).  

In the study conducted by Szymanowski and Kryza (2012), temperature data was 

collected in 206 different points across Wroclaw, Poland to systematically represent a 

variety of land-use categories in areas that presented “interesting and geometrically 

diverse areas in the city center” (2012, 55). The study took into consideration automatic 

weather station measurements in both urban and rural areas and utilized Landsat ETM+ 

data to derive information such as albedo, land surface temperature and vegetation 

indices. Data on buildings roughness length, building density, porosity and Sky View 

Factor (SVF) were obtained using LiDAR point cloud data which were later converted to 

a raster dataset of 1m resolution. Although different statistical methods to analyze and 

improve the spatial interpolation of the urban heat structure were used (multiple linear 

regression, geographically weighted regression, Akaike information criteria, and Moran’s 

Index), results showed that geographically weighted regression were better suited for 

spatial modelling of urban heat. 

Balázs et al. (2009) discussed how empirical models based on previous datasets 

were used to analyze the annual mean urban heat intensity for Szeged and Debrecen 

(Hungary). The authors used single and multiple variable models based on linear and 

multiple regression techniques and considered independent variables such as surface 

cover ratio (streets, roofs, parking lots, and pavements), distance from the city 

boundary/center, and a combination that considers the built-up ratio and its area extent. 

Results showed a high correlation of r²=0.774 and r²=0.816 between the modeled and 

observed temperature values for the areas (depending on which independent variables 
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were used) as an average for the three cities (Hajduboszormeny, Hajdudorog, and 

Hajdunanas) to which the model was applied. 

Originating from a project called ICALON (Ilhas de Calor de Londrina) in 

southern Brazil, Oukawa et al. (2022) compared two different modeling approaches 

(multiple linear regression and random forest) to analyze and predict the spatiotemporal 

occurrence of the UHI intensity using air temperature as the dependent variable. To do 

that, urban temperature was measured in 12 different sites in the city of Londrina using 

HOBO sensors (U23-001, Onset) with built-in data loggers, and were complemented with 

data from two more permanent weather stations. A great number of independent spatial 

variables broken into four categories (land cover, topography, urban geomorphology, and 

population and traffic) were used to create the models. For example, land cover data was 

derived from Sentinel-2, elevation, wind speed, and relative humidity were derived 

directly from data from weather stations. According to the authors, the urban heat island 

intensity was more pronounced during the night (10 p.m. – 06 a.m.) due to the 

combination of sustained clear skies, high radiation, and no rainfall caused by lingering 

high-pressure systems (LHP). From the two statistical techniques used to create the 

models (multiple linear regression and random forest), random forest performed 

considerably better than multiple linear regression, with explanatory power of over 96% 

in both, daytime and nighttime (compared to 64% and 34% respectively). The model was 

validated using a training dataset (80%) and testing (20%) and reiterated 300 times to 

ensure transferability. 

Table 1 displays the range of selected independent variables by studies that used 

similar temperature collection methods and or statistic approaches.  
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Table 1 
List of studies that used similar temperature collection method, independent variables 
and/or similar statistical methods 

 

 

Studies focused on understanding the impacts of anthropic activities on urban 

temperatures as part of their objectives often make use of independent variables such as 

population density or city size. Studies that focus on the spatial effects of two- and three-

dimensional urban features on the formation of UHI (and its variations as sUHI) set their 

independent variables as for example building geometry and SVF, as seen in Chun and 

Guhathakurta (2017). Studies that investigate how morphometric features and human-

induced activities influence and can be influenced by urban temperature variation often 

use a broad set of independent variables, going from LULCs, and building volume, to 

tree canopy, and traffic. 

 

Literature Review Summary and Context of this Study 

Elevated urban heat regimes have been demonstrated across the globe and the 

likelihood of such events is predicted to increase in the future. Better data on the spatial 

heterogeneity of urban heat can benefit a range of stakeholders. Mirzaei (2015, 200) 

summarized the negative consequences of elevated urban heat as such: ‘...elevated air 
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temperature of a city, … increases the heat and pollution-related mortality, reduces the 

habitats’ comfort, and elevates the mean and peak energy demand of buildings’. Urban 

temperatures have been shown to vary significantly across relatively small distances in 

urban areas (e.g., Voelkel et al. 2018) and affect different populations disproportionately 

(e.g., Alizadeh et al. 2022). While there is a long history of urban heat studies, especially 

using land surface temperature values derived from satellite imagery, recent studies (e.g., 

Shandas et al. 2019) have been leveraging low-cost mobile air temperature sensors in 

conjunction with highly detailed urban metric data derived from LiDAR, imagery, and 

other sources to develop highly detailed (e.g., ~1m spatial resolution) maps or urban 

temperature. Agencies such as the US National Oceanic and Atmospheric Administration 

are implementing these types of studies in larger urban areas across the country yet none 

in Iowa. This study supplements such efforts and contributes by being the first study (as 

known to the author) to examine urban heat in multiple urban areas ranging from small to 

medium-sized towns in a single state.  
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Chapter 3 

Methodology 

Study Area 

Iowa is one of the 12 states in the Midwest region of the United States, located in 

the center of the region between 40°35’N - 43°30’N latitude and 90°8’W - 96°38’W 

longitude. Surrounded by the Mississippi (east) and Missouri Rivers (west), it borders six 

other states: Minnesota (north), Wisconsin (northeast), Illinois (southeast), Missouri 

(south), Nebraska (southwest), and South Dakota (northwest). With an area of 55,857 

square miles, Iowa figures as the 9th largest state by area in the region, its highest 

elevation is in Osceola County at 1670 feet and the lowest elevation point is in Lee 

County at 480 feet (USGS 2022).  

According to Köppen Climate Types, Iowa is in a hot-summer humid continental 

climate area (Dfa) and in the past decade (2012 – 2022) had an average temperature of 

9.1°C and a precipitation of 35.52 inches per year. The maximum average temperature for 

the same period was 14.8°C and the minimum average temperature was 3.4°C (NCEI-

NOAA 2022).  

Iowa is the 19th smallest state population-wise in the United States, with a resident 

population of 3,190,369 in 2020 (U.S. Bureau Census Data 2022). It has a Gross 

Domestic Product of approximately 170 billion dollars, and it is positioned as the 29th 

largest GDP out of the 50 states (U.S. Bureau of Economic Analysis 2022). Iowa’s 

economy is based primarily on products and manufacturing services related to 

agriculture. According to an economic report published by Iowa State University (2020), 
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17.4% of the state’s GDP relies exclusively on the agricultural industry and 

approximately one in every six Iowans work directly within the same industry. 

Statistically, in the United States, states that economically rely more on 

agriculture, tend to present lower levels of urbanization. That is true for the state of Iowa, 

where the urban population represents 64% of the total state population, as compared to 

80.7% nationwide (U.S. Census Quick Facts 2021). Less than one-third of 99 counties in 

Iowa have an urban population of over 50%, and the population of several counties was 

classified exclusively as rural. 

From 2000 to 2020, the population growth in the United States was 17.4% (from 

282.2 to 331.45 million) compared to 8.9% in Iowa, going from a population of 2.93 

million to 3.19 million (U.S. Census Bureau Data 2022). Considering only the 6 most 

populated cities (U.S Census Bureau Data 2022) in the state (Des Moines, Cedar Rapids, 

Davenport, Sioux City, Iowa City, and Ankeny), the average population growth was 

7.9%, 9.5% behind the national rate but 1% behind the state rate, indicating that rural 

areas have the potential to see a more rapid increase in population than urban areas. 

While Iowa has no urban area with a population over one million inhabitants (e.g., 

Des Moines is the largest by population with approximately 210,000 inhabitants) it 

presents an opportunity to supplement past and recent urban heat pattern research (e.g., 

Shandas et al. 2019) which has focused on large urban areas. This study attempted to 

examine urban heat patterns across urbanized areas of various sizes including 

investigating whether smaller cities with comparable highly local urban structures (e.g. 

tree canopy, building density) experience urban heat similarly (with the same 

proportional variation in temperature) to larger cities. This heterogeneity of the urban 
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division in Iowa provides an interesting scenario for this study to be conducted. Based on 

the lower urban population compared to the national average, on top of a different 

populational growth rate among urban areas implies that cities would have a more diverse 

urban setting than large urban centers (e.g., not only tall structures in downtown), 

enabling a comparative analysis between cities that have a similar area with differing 

urban configurations, and cities with a similar level of urbanization but different overall 

areas. 

This study collected temperature data from urban areas with populations ranging 

from 10,000 to 210,000 inhabitants throughout the state (different regions) on very hot 

days in the summer of 2022. Although specific weather patterns (e.g., rain) and logistical 

constraints (e.g., distance) played a role in the specific locations, the cities  visited 

included Burlington, Cedar Falls, Cedar Rapids, Council Bluffs, Des Moines, Fort 

Dodge, Marshalltown, Sioux City, Waterloo, and Waverly. 
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Figure 2 
Cities for which temperature data was collected in 2022 

 

 

Data Acquisition 

Five primary datasets were used throughout this study: air temperature (collected 

through mobile sensors); morphometric features derived from high-resolution elevation 

LiDAR data (provided by the state of Iowa); satellite imagery (provided by the United 

States Department of Agriculture); building footprint vector files (provided by counties, 

cities, and generated by deep learning techniques originated from Microsoft USA); and 

socio-economic data adapted from Census Data at the census block group level (provided 

by the United States Census Bureau). The first four were used in the building of spatial 

temperature models while the socio-economic data were used to evaluate modeled air 
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temperature surfaces to investigate if there are noticeable differences across 

neighborhoods with varying socio-economic conditions.  

 

Air Temperature Data Collection 

The mobile devices used in this study (Figure 3) were built and tested by Dr. 

James Thomas Dietrich, who was an Assistant Professor of Geography at the University 

of Northern Iowa during the investigation of the study. A total of 9 fully functional 

devices were built to allow multiple collections at the same time in the same or different 

cities. Dr. Dietrich also developed a Python-based coding that allowed sensor 

communication and data collection and for post-processing of the raw data collected by 

the sensors. The main components of the devices, which allow for air temperature 

collection, were built using Adafruit Sensirion SHT40 Sensors along with an Adafruit 

Mini GPS Stemma QT PA1010D. 
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Figure 3 
Temperature sensor devices. Source: James Dietrich, and the author 

 

 

Although air temperature data collection is the focus of this study, sensors also 

record additional data such as surface temperature (Malexis Infrared Sensor 

MLX906143V), humidity (Adafruit Sensirion SHT40), and elevation (Adafruit 

BMP280I2C). Sensors were pre-programmed to collect data every second. The precision 

of the thermometers is two decimals’ Celsius degrees, and the accuracy is up to 0.2°C 

(Adafruit 2022).  

Previous studies that used vehicle-mounted temperature sensors showed the 

influence of the heat generated by the car engine on the air temperature readings (Stewart 

2000; Balász 2009). However, testing with three devices being mounted on three different 

positions (driver’s window, passenger front window, and passenger’s back window on the 

driver’s side) showed negligible difference (and within the accuracy of the devices) on air 

temperature measurements across all devices, as can be seen in Figure 4. 
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Figure 4 
Testing for vehicle-mounted device positions. June 12th, 2022 

 

 

In ideal data collection scenarios, multiple vehicles and sensors could be used on 

a specific day in a given urban area. However, due to staff, funding, and logistical 

constraints, individual data collection missions were sometimes necessary.  

Since the devices were programmed to store the collected data (e.g., temperature, 

humidity) to a text file (.txt) format (Figure 5), a post processing phase took place after 

in-situ temperature collection. Below is a representation of the data collected per point. 

The information outlined in red shows the time of recording (19:52:11), the information 

outlined in yellow shows the latitude and longitude (42.310032 N, 92.274856W) of the 

location that the data was collected, the information outlined in orange (38.38) is the air 

temperature recorded in Celsius, and the information outlined in green (42.57) is the 

humidity. A post-processing Python script was used to translate this raw file format into a 

.csv file which was then imported as an ESRI File Geodatabase feature class.  
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Figure 5 
Representation of the raw data collected by mobile devices 

 

 

Figure 6 shows an example of the test collection of air temperature on June 12th, 

2022, during a hot day (34°C/93°F+) in the cities of Cedar Falls and Waterloo/Iowa.  

 

Figure 6 
Processed temperature collection data in Cedar Falls and Waterloo - Iowa on June 12th 
2022 

 

 

Efforts were made to follow established precedence in data collection 

methodologies. For example, the ideal speed of the vehicle, on which the thermometer 
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was mounted, was determined to generate a consistent data collection throughout the 

whole area. Studies such as Voelkel and Shandas (2017) suggested that speeds should be 

kept under 56 kilometers per hour to prevent any cooling of the sensor due to turbulence 

at higher speeds, while other studies as Saaroni et al. (2000), and Wong and Yu (2005), 

worked with speeds not higher than 30 kilometers per hour and 50 kilometers per hour, 

respectively. In addition, although studies such as Voelkel and Shandas (2017) discarded 

all data collected while the vehicle was stationary, Balász et al. (2009) utilized data 

collected while the vehicle was in movement between the speeds of 20 km/h to 30km/h to 

provide the necessary ventilation of the sensor. Following similar studies utilizing mobile 

sensors to collect high-resolution temperature data such as Voelkel and Shandas (2017), 

and Shandas et al. (2019), temperature points collected at speeds that exceed 35 miles per 

hour were discarded. However, to promote a better understanding of the correlation 

between vehicle speed and the variation in air temperature, a statistical analysis was used 

to evaluate and compare air temperature data collected and the speed at which vehicles 

were moving. 

To investigate the variation of temperature across all cities in a consistent manner, 

the time of data collection was based on the findings suggested by Oke (1982). According 

to the author, the higher variation of heat between urban areas and non-urban areas can be 

seen between 8 p.m. and 12 a.m., while the heat is more intense between 2 p.m. to 4 p.m. 

(Figure 7). Although this study focused on examining the patterns of temperature in urban 

environments, the presence of areas with low density of built-up structures and with 

characteristics that resemble non-urban areas are expected to be seen within an overall 

city or urban area. Days of the collection were chosen based on days that were forecasted 
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to exceed 90°F (32.2°C), which is believed to exacerbate the differences in temperature 

in the urban environment (Voelkel and Shandas 2017). It is known that wind speed and 

clear skies (cloudless skies) have a great influence on UHI intensity, especially on 

summer nights (Oke 1982). Yet, aligning these meteorological conditions on the planning 

aspect of data collection has proven to be challenging, either for enabling one of the 

predetermined conditions to be strictly followed (days with temperatures above 90F) or 

for the logistics involved on the availability of personnel for temperature collection in 

one or multiple areas.  In this study, the time of collection happened three times within 

the time frame of one day in each study area for a period of one hour: 4 p.m. to 5 p.m., 9 

p.m. to 10 p.m., and 4 a.m. to 5 a.m. The period of one hour for each data collection is 

required to control for the variation of radiation experienced by different areas while 

working to minimize the variability in temperature and weather conditions that might 

occur in the city (Saaroni et al. 2000). 

Temperature data were collected throughout different urban areas in the state of 

Iowa, representing small to medium size cities, varying from approximately 10,000 to 

210,000 inhabitants and areas varying from 11 to approximately 88 square miles. 

Although the area covered by temperature collection varied according to traffic, road 

condition, and speed limit, the time frame of collection was consistent throughout the 

different study areas for each run (approximately 1 hour). 
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Figure 7 
The energetic basis of the urban heat island. (Oke 1982) 

 

 

 

LiDAR Data and Imagery 

For this study, different independent variables were generated from a variety of 

geospatial datasets through automated geoprocessing techniques. LiDAR point cloud data 

collected by the state of Iowa during the years 2019-2022 was used to estimate urban 

vegetation and building morphology; building vector files obtained directly from counties 

and cities were used to improve the accuracy of individual 3D building features present in 

the study areas; and airborne imagery from the United States Department of Agriculture 

National Agriculture Imagery Program (NAIP) was used to generate normalized 

difference vegetation index (NDVI). 
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Initial efforts to collect high-resolution LiDAR data in the state of Iowa started in 

2007 (LiDAR for Iowa 2019) and an updated statewide coverage of detailed LiDAR data 

was collected from 2019-2021 (Iowa 2022). With a minimum of 2 points per square 

meter with a vertical and horizontal accuracy of 95%, these data provide highly detailed 

coverage across all of Iowa and can be used to derive a variety of landscape structure 

metrics, which can be evaluated in relation to collected urban temperatures similar to 

efforts made by studies such as Voelkel and Shandas (2017).  To generate the input files 

for the needed variables, various geoprocessing operations were performed, such as 

converting downloaded LAZ data into LAS data format; classification of lidar point 

cloud data; production of raster files representing the proportion of specific classes in 

each study area such as ground density and vegetation density; and the creation of models 

representing the bare-earth (digital elevation models), and above ground features existent 

in the study areas (digital surface models).  The LiDAR point cloud data, in order to 

accurately represent the shape and surface area of buildings, were processed along with 

building vector polygons, to construct building multi-patch feature classes.  

The literature suggests a variety of urban morphometric features that, if not 

directly responsible for the changes in temperature within the urban environment, at least 

are seen as important components in explaining urban heat patterns. A main feature that 

seems to have a high influence on urban temperature throughout the literature is 

vegetation (or the proportion of it compared to other features). For that reason, imagery 

downloaded from the NAIP was used to create individual NDVI raster files for each 

urban area. According to the United States Department of Agriculture (USDA), the NAIP 

program was created to support two main strategic goals both centered on agriculture 
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production: “(1) increase stewardship of America's natural resources while enhancing the 

environment, and (2); to ensure commodities are procured and distributed effectively and 

efficiently to increase food security.” (NOAA 2022b). Collected between August 3rd, 

2021 and January 20th, 2022, the 2021 Iowa NAIP 4-Band 8-bit Imagery has an accuracy 

of +-4 meters to the reference image, and a resolution of 60 centimeters. 

All three mentioned datasets (LiDAR point cloud data, Building Footprints, and 

NAIP Imagery) provided the necessary data to generate all 5 independent variables that 

were used to interpret, analyze, correlate, and modeled all predictive temperature surface 

raster results during the modeling stage of this project. Each of these independent 

variables was developed as a raster dataset with a one-meter resolution. The variables and 

their definitions are as follows: 

• Canopy Cover (CC): the proportion of vegetation compared to the amount of 

bare-earth and built-up structure in a given area (derived from LiDAR point 

cloud data classified as bare-earth and as vegetation points). The results are 

expressed in pixel values going from 0 to 1, where 0 represents no vegetation, 

and 1 represents fully vegetated area.  

• Canopy Density Metric (CDM): the result of pixel values of CC multiplied by 

pixel values found in the normalized digital surface model (nDSM) which 

represents the relative height of features from the DSM. 

• Building Height (BH): the height of buildings expressed in meters in each 

individual pixel. 

• Building Volume (BV): the volume of buildings expressed in cubic meters. 
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• Normalized Difference Vegetation Index (NDVI): the value per pixel ranging 

from minus one (-1) to plus one (+1) representing the density, intensity of 

vegetation as well as vegetation health.  

 

Table 2 provides a compilation of the datasets that were used throughout this 

study to derive different sets of independent variables including the socio-economic 

variables (ethnicity and median household income) used in comparison to the modeled 

temperature surfaces: 

 

Table 2 
List of datasets to derive independent variables 

 

 

Temperature Modelling 

Data from the temperature collection and the urban landscape metrics derived 

through geoprocessing of primary sources from Table 2 were organized based on location 

to create comprehensive ESRI File Geodatabases per urban area. The geodatabases 

allowed the development of spatial models, described below, which were applied on a 

spatial resolution of one square meter per study area and  time periods (afternoon, 

evening, and night). The models basically took the collected temperature point data as the 

dependent variable while using the derived urban morphometric data surrounding the 

points as independent variables to extrapolate spatial models that estimate urban 
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temperatures at those urban locations where no temperatures were recorded. Although 

several techniques can be used to create such models and to analyze and predict urban 

heat patterns, the most common methods found in the reviewed literature were MLR, 

CART, RF, and sometimes a combination of multiple methods in the same study. Even 

though multiple statistic techniques/algorithms have been used to develop temperature 

models, recent studies utilizing mobile devices for temperature data collection showed 

that RF significantly outperformed MLR and CART (Voelkel and Shandas 2017; 

Shandas, et al. 2019; Oukawa et al. 2022; Chen et al. 2022).  

Recent advances in spatial statistical modeling techniques have been built into 

embedded tools in the software ArcGIS Pro (3.0.1). Thus, for this study, ArcGIS Pro was 

used for most of the steps in both the pre-processing of dependent and independent 

variables and also in spatial modeling.  The Forest-based Classification and Regression 

(nomenclature utilized by ArcGIS Pro for RF algorithm) model built into the Spatial 

Statistics toolbox in ArcGIS Pro was chosen for air temperature modeling. Random forest 

is a supervised machine learning method developed by Leo Breiman and Adele Cutler 

(ESRI 2022). Random forests are a non-parametric and nonlinear machine learning 

technique and are a “combination of tree predictors such that each tree depends on the 

values of a random vector sampled independently and with the same distribution for all 

trees in the forest” (Breiman 2001, 1). In addition, models generated using a random 

forest algorithm not only provided the predicted temperature in areas where temperature 

data was not collected but also indicated the most influential independent variables that 

explain temperature patterns throughout each individual study area. 
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Natural and built-up structures (e.g., canopy cover, building height, building 

volume) surrounding the area in which temperature data was collected vary and thus 

statistical values for those characteristics were calculated around each site with fixed 

neighborhood distances of 50, 100, 200, 400, and 800 meters. These values were captured 

in the form of raster surfaces utilizing the Focal Statistics tool in ArcGIS Pro. This 

methodology has been utilized previously when using RF for modeling, as surrounding 

urban conditions provide a better understanding of the spatial relationship between 

different features on the variation of temperature (Voelkel and Shandas 2017; Chen et al. 

2022; Oukawa 2022). 

Systematic efforts such as consistent mobile devices check (before temperature 

data collection), post-temperature collection data filtering (e.g., eliminating points 

collected when vehicles were stationary), and a LiDAR overlap classification (discarding 

multiple LiDAR points collected for the same area) were performed to control for 

potential errors or inconsistencies in both the collected temperature measurements and 

geospatial data used to derive independent variables. These efforts sought to identify 

malfunctioning devices, to isolate duplicate data that could be generated throughout data 

collection, or abnormalities that can be presented in LiDAR raw data point cloud datasets 

(.las).   

A hold-out method (which are part of the settings existent within Forest-based 

Classification and Regression tool in ArcGIS Pro) for model evaluation (Oukawa et al. 

2022; and Voelkel and Shandas 2017), which separates the temperature dataset in two 

sets was used to assess the accuracy of the model, was used, which according to Berrar 
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(2019) is one of the simplest data resampling strategies and capable of reliably estimate 

errors of the model for unseen/new cases. 

 

Independent Variables product development through geoprocessing 

A significant effort was necessary to geoprocess a variety of spatial data in order 

to produce files that served as independent variables for this study.  Canopy Cover (CC) 

and Canopy Density Metric (CDM) were directly derived from lidar point cloud data 

originating from the United State Geological Survey (USGS). A total of 1,110 Lidar 1x1 

km tiles (~36 gb), with a point spacing from 0.233 to 0.649 m stored in LAZ format were 

downloaded through an automated Python script. A combination of LiDAR data and 

building footprints provided by counties and cities was used to derive two other 

independent variables used for the model: Building Volume (BV) and Building Height 

(BH). 

Normalized Difference Vegetation Index, known as NDVI, was derived from the 

2021 United States Department of Agriculture National Agricultural Imagery Program 

(NAIP) aerieal imagery and sourced via the geodata.iowa.gov web application.  

Metrics on all of the above independent variables were also calculated based on 

varying neighborhood distances (similar to buffers) to investigate the influence of the 

surrounding environments in relation to each measured temperature point similar to other 

studies such as Voelkel and Shandas (2017). In order to define an overall processing area 

for each set of temperature measurements, a 1,500 m buffer was calculated in ArcGIS Pro 

(Buffer tool) around the measured temperature points. The decision to set an area of 

interest at 1,500 meters, despite the focal statistics tool using distances no larger than an 
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800-meter radius, was made to accommodate potential future projects requiring a broader 

neighborhood distance or to address unexpected errors during the data processing phase.  

Automated geoprocessing was carrried out using Python scripting utilizing Arcpy; 

which is a site package that allows all ArcGIS Pro geoprocessing functionality to be 

accessed via Python. Specifically all LAZ files were converted to LAS files, subsequently 

creating a LAS Dataset for each urban area and its respective tiles. The LAS Dataset 

allows for the raw data to be stored in LAS files but through an indexing scheme, 

allowing for faster processing time as well as allowing for contiguous areas to be 

analyzed by different tools individually. In addition, a backup of all LAS files was 

created to prevent unnecessary reprocessing due to possible errors that could occur during 

the LAS classification stage. 

The first step to classifying aerial lidar points was to filter and eliminate points 

that are present within a distance shorter than the nominal point spacing due to 

collections from different flight lines. After filtering overlapped points, LAS files were 

then classified into 4 main classes. The main classes are ground points, building points, 

noise points, and vegetation points. Vegetation points, classified through the use of the 

tool named Classify Las by Height in ArcGIS Pro, was subdivided into 3 more classes: 

low vegetation (up to 5 meters tall), medium vegetation (up to 25 meters tall), and high 

vegetation (over 25 meters tall). Even though height classification as well as the number 

of classes can vary according to the researcher, for this project, the vegetation height was 

not an influence on the model since vegetation type was not used as an independent 

variable. 
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With the exception of LAS Noise, all other classes were used to derive 

subsequential geospatial raster datasets. Ground points were used as base to generate 

Digital Elevation Models (DEMs), which in conjunction with building and vegetation 

points were used to derive a Digital Surface Model (DSM). Subtracting the DSM raster 

values from DEM generated a Normalized Digital Surface Model (NDSM), which is the 

difference between the built-up and vegetated surface and the bare ground. 

To generate an estimate of vegetation density, which is used to create a measure of 

Canopy Cover (CC), one of the independent variables of the model, points classified as 

vegetation were used as well as points classified as ground. The ratio of vegetation points 

to ground points in a specific area yields the Canopy Cover (Figure 8), expressed as a 

percentage ranging from zero (non-vegetated area) to one (completely vegetated area). 

The maps of independent variable spatial data displayed below would be similar for each 

city but an example from the Waterloo/Cedar Falls area is provided. 
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Figure 8 
Illustration of Canopy Cover in Waterloo/Cedar Falls 

 

Following a concept used in Voelkel and Shandas (2017), which considers not 

only the vegetation coverage of a given area but also its height, a new variable 

denominated as Canopy Density Metric was created and was derived from multiplying 

Canopy Cover by NDSM. Even though the calculation evokes the idea of volume, it is 

inaccurate to use the term since the result doesn’t consider the individual and accurate 

shape of each object, therefore, the results for CDM are expressed only as a unitless 

measure displayed as Value, which can be seen in Figure 9. 
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Figure 9 
Illustration of Canopy Density Metric in Waterloo/Cedar Falls 

 

LiDAR points classified as buildings (rooftop points), and building footprints 

vector files provided by counties, cities, and public repositories (Microsoft 2018) were 

used to derive two variables that were used for the final model: Building Height (Figure 

10) and Building Volume (Figure 11). The steps utilized to generate both variables were 

identical to what was used to generate the variable named Canoy Cover, identifying what 

points were classified as the goal feature (buildings points in this case), with the addition 

of building footprints vector files, which were used to reshape the surface area given that 

LiDAR points are not homogenously available for each built-up structure area 
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Figure 10 
Illustration of Building Height (BH) in Waterloo/Cedar Falls 

 



45 
 

Figure 11 
Illustration of Building Volume (BV) in Waterloo/Cedar Falls 

 

 

To generate the fifth independent variable (NDVI), a further raster calculation of 

the multiple bands originating from NAIP imagery was needed. Since the downloaded 

imagery was presented as a four-band imagery (CIR + NIR), a simple raster calculation 

((NIR – Red)/(NIR + Red)) was performed, where NIR is the Near Infrared 

channel/band, and Red is the Red channel/band. The low values in NDVI (e.g. < 0.1) 

reflect areas with little vegetation (e.g. water, barren land) and higher values (e.g. > 0.3) 

where there is a significant amount of vegetation (NASA 2000). An example of the 

calculated NDVI can be seen in Figure 12, which represents the area of Waterloo/Cedar 

Falls. 
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Figure 12 
Illustration of NDVI in Waterloo/Cedar Falls 

 

In order to evaluate the natural and morphological features surrounding measured 

temperature points, raster datasets were created for the five independent variables and 

five neighborhood distances (50, 100, 200, 400, and 800 meters) using the Focal 

Statistics tool. In addition, not one but two statistic types were used for each single 

variable and neighborhood distance: MEAN, which represents the average value of the 

cells in the defined neighborhood, and STD, which represents the standard deviation of 

the cells in the neighborhood. This method has been successfully implemented in other 

studies (e.g., Voelkel and Shandas 2017), providing alternatives for how values (based on 

different features) are distributed across given areas. A total of 50 different raster files 

were generated for each urban area (five variables * five neighborhood distances * two 

statistical measures). 
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A workflow of the process to derive the necessary raster datasets used as 

independent variables used in the Random Forest model can be seen in Figure 13.  

Ellipsoids represent functions and geoprocessing tools, rectangular red-filled objects 

represent the input datasets, rectangular white-filled objects represent the outcome files 

necessary to generate the final independent variables used in the Random Forest 

modeling, and rectangular blue-filled objects represent the generated independent 

variables and final outcome (predictive models). 

 

Figure 13 
Workflow to derive the final air temperature predicted raster models using Random 
Forest algorithm 

 

 

To process the multiple datasets, three computers with two different hardware 

configurations were used. Computer one was powered by an AMD Ryzen 5 5600H (6 



48 
 

cores), 64GB of RAM, and a Nvidia RTX 3060 6GB. Computers two and three were 

powered by an Intel I7 12700 (12 cores), 32Gb RAM, and an Nvidia T400 4GB. All 

computers utilized NVME storage drives which significantly reduced the read and write 

speeds of different files necessary for the model. In addition, all computers had the same 

version of ArcGIS Pro (v3.03) at the time of processing.  

The time taken to process all data varied across urban areas, either due to area 

size, or due to the differences in the quantity of features in each area (e.g., more rooftop 

points that needed to go through 3d multipatch tools). In addition, it is acknowledged that 

the total number of points derived from LiDAR data might have strongly influenced the 

necessary time to process each dataset since point spacing varied from 0.233 to 0.649 

across multiple datasets. The total amount of time spent processing all data, not 

considering software errors, was 208 hours. Table 3 shows the total number of LiDAR 

points per urban area, the number of LiDAR tiles, the total storage of the processed data 

(not considering backup), and the time necessary to process the workflow. 

 

Table 3 
Amount of data and processing times for geospatial modeling 
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The parameters set in RF for all models consisted of 1000 randomized trees built 

from all effective focal distance raster datasets to predict a new surface raster (air 

temperature values) in each urban area in the afternoon, evening, and night.  A 70/30 

hold-out method for model evaluation was used to assess the accuracy of all models. This 

technique separates the temperature measurements into two sets (training set and testing 

set) and was set as the percentage of data excluded for validation (=30%) before running 

each one of the models. Finally, only one number of runs was used as a validation option. 

The RF model originally considered one dependent variable (predicted Air 

Temperature) and 50 different independent variables based on five variables (CC, CDM, 

BH, BV, NDVI) each calculated with two different statistical measurements (mean and 

standard deviation) at five different neighborhood distances (50 meters, 100 meters, 200 

meters, 400 meters, and 800 meters) . However, Building Volume (BV) calculated at all 

neighbor distances as standard deviation (BV_STD) showed noticeable signs of banding 

(straight lines across the whole area of interest) with no calculated values, and thus was 

excluded from the modeling. Two other variables, Canopy Cover (CC), and Canopy 

Density Metric (CDM) presented the same banding issue using standard deviation at 

distances under 400 meters ((CC_STD<400m) and (CDM_STD<400m)). Their standard 

deviations computed at 50 meters, 100 meters, and 200 meters  were also discarded from 

the model for all urban areas. Therefore, only 39 different independent variables were 

used for the final model in all urban areas (Table 4).  
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Table 4 
List of independent variables utilized for Random Forest models 

 

INDEPENDENT VARIABLE ALIAS
Mean Building Height at 50m BH_Mean50
Mean Building Height at 100m BH_Mean100
Mean Building Height at 200m BH_Mean200
Mean Building Height at 400m BH_Mean400
Mean Building Height at 800m BH_Mean800
Standard Deviation Building Height at 50m BH_STD50
Standard Deviation Building Height at 100m BH_STD100
Standard Deviation Building Height at 200m BH_STD200
Standard Deviation Building Height at 400m BH_STD400
Standard Deviation Building Height at 800m BH_STD800
Mean Building Volume at 50m BV_Mean50
Mean Building Volume at 100m BV_Mean100
Mean Building Volume at 200m BV_Mean200
Mean Building Volume at 400m BV_Mean400
Mean Building Volume at 800m BV_Mean800
Mean Canopy Cover at 50m CC_Mean50
Mean Canopy Cover at 100m CC_Mean100
Mean Canopy Cover at 200m CC_Mean200
Mean Canopy Cover at 400m CC_Mean400
Mean Canopy Cover at 800m CC_Mean800
Standard Deviation Canopy Cover at 400m CC_STD400
Standard Deviation Canopy Cover at 800m CC_STD800
Mean Canopy Density Metric at 50m CDM_Mean50
Mean Canopy Density Metric at 100m CDM_Mean100
Mean Canopy Density Metric at 200m CDM_Mean200
Mean Canopy Density Metric at 400m CDM_Mean400
Mean Canopy Density Metric at 800m CDM_Mean800
Standard Deviation Canopy Density Metric at 400m CDM_STD400
Standard Deviation Canopy Density Metric at 800m CDM_STD800
Mean NDVI at 50m NDVI_Mean50
Mean NDVI at 100m NDVI_Mean100
Mean NDVI at 200m NDVI_Mean200
Mean NDVI at 400m NDVI_Mean400
Mean NDVI at 800m NDVI_Mean800
Standard Deviation NDVI at 50m NDVI_STD50
Standard Deviation NDVI at 100m NDVI_STD100
Standard Deviation NDVI at 200m NDVI_STD200
Standard Deviation NDVI at 400m NDVI_STD400
Standard Deviation NDVI at 800m NDVI_STD800

LIST OF INDEPENDENT VARIABLES (RASTER FILES) USED AS INPUT FOR RANDOM FOREST (RF)
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Socio-demographic Data and Analysis 

To examine whether high temperatures are located in the same areas as 

populations with specific demographics characteristics, income, and ethnicities/race data 

per census block group were compared to all the average modeled (predicted) 

temperature raster through the use of Pearson correlation coefficient and Linear 

Regression. The socioeconomic dataset was acquired through the American Community 

Survey from 2016 – 2021 (5-year estimate) administered and published by the United 

States Census Bureau and released on December 8th, 2022 (Census 2022). The 

aforementioned techniques allowed for the author to examine whether low-income and 

specific ethnic groups were statistically positively correlated to modeled higher 

temperatures in urban areas or not. The average modeled temperature was calculated by 

using Zonal Statistics as Table tool in ArcGIS Pro. This tool allowed for the calculation of 

statistical measures, such as the mean of modeled temperature in a given census unit 

which could then be compared statistically to the socioeconomic variables.  
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Chapter 4 

Results 

Chapter 4 describes the results obtained throughout the temperature data 

collection that occurred from May 2022 to September 2022; the spatial statistical 

predictive model respective results; and the socioeconomic analysis which seeks to 

explore the variation of temperature in different urban neighborhoods with varied socio-

demographics. 

 

Temperature data collection 

Temperature data were collected in seven different urban areas at three consistent 

times of the day, referred to as afternoon (4 – 5 p.m.), evening (9 – 10 p.m.), and night (4 

– 5 a.m.): Burlington, Cedar Falls, Cedar Rapids, Council Bluffs, Des Moines, Sioux 

City, and Waterloo. In three other cities, data were collected only in two periods, either 

due to logistical constraints (Waverly and Fort Dodge), or extreme weather conditions 

during the day of collection (Marshalltown).  

Table 5 depicts the summary of dates, number of routes, time of collection, and 

number of measurements taken in each one of the study areas. The number of routes 

(sometimes referred to as a run) was somewhat dictated by the size of the study area and 

indicates how many individual vehicles were used on that given date/time. 

 



53 
 

Table 5 
Summary of runs for air Temperature data collection 

 

 

To minimize the impact that changes in weather (abrupt drops or spikes in 

temperature, winds, etc.), each run was planned to be performed within 60 minutes. 

Routes were defined utilizing Google Maps (satellite view, Street View) as a visual aid in 

identifying areas with a variety of land use/cover (e.g., residential, commercial, 

industrial, with varying vegetative and impervious cover). The temperature collection 

was scheduled on days that temperatures were expected to reach at least 90°F (32.2 °C) 

and sought to not only keep the expected run time of one hour but also to explore 

different natural and human-influenced land use in each urban area, going from vegetated 

parks and areas surrounded by bodies of water to residential, commercial, and industrial 

areas with varying levels of building and vegetation density. In specific circumstances, 

such as heavy traffic, road construction, or technical problems, some routes ended up 

slightly longer than one hour, which was the case for the Council Bluffs area (afternoon) 

with the longest route totaling 70 minutes and 55 seconds. 

Considering the number of vehicles involved in all three times of the day and all 

urban areas where data was collected, the total number of individual collections (vehicle 

per route per time of collection per urban area) was 39. Out of the 39 individual 

collections, faulty/broken devices were seen on three occasions (7.7%). In one out of 

URBAN AREA DATE NUMBER OF ROUTES TIME OF COLLECTION TOTAL MEASURMENTS TAKEN
Waverly 14-Jun 1 Afternoon, Evening 7,160
Cedar Rapids 20-Jun, 21-Jun 3 Afternoon, Evening, Night 23,918
Marshalltown 05-July, 06-July 1 Afternoon, Night 4,114
Sioux City 18-July, 19-July 2 Afternoon, Evening, Night 9,647
Fort Dodge 19-July 2 Afternoon, Evening 5,151
Des Moines 02-Aug, 03-Aug 3 Afternoon, Evening, Night 29,817
Council Bluffs 13-Aug, 14-Aug 1 Afternoon, Evening, Night 11,805
Burlington 05-Aug, 06-Aug 1 Afternoon, Evening, Night 10,315
Cedar Falls/Waterloo 20-Sept, 21-Sept 1 Afternoon, Evening, Night 11,299
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three situations, a backup device was able to replace the broken apparatus. In the other 

two cases, the devices didn’t record/save the data that were being collected throughout 

the entire collection period, which was the case for the area of Cedar Rapids in one of the 

routes during the afternoon, and evening. In addition, a software update was required 

during the summer 2022, which led to an inadvertent change in data collection to every 

two seconds, as opposed to every one second. This change affected recordings in Fort 

Dodge, Marshalltown, and Sioux City. As further examinations suggested, the data was 

recorded correctly, even though less frequent measurements were acquired. 

Table 6 shows the distribution of all 113,226 measurements taken in all urban 

areas and the number of  points collected by all the devices at different times of the day.  

 

Table 6 
Total measurements in all urban areas 

 

 

To avoid multiple measurements at the same location, data that were recorded 

when vehicles were stationary were excluded from the dataset. Table 7 shows the 

percentage of data that showed vehicle speeds = 0 therefore, being excluded from the 

dataset. 

URBAN AREA AFTERNOON EVENING NIGHT
Waverly 3,946 3,214 -
Cedar Rapids 7,275 7,341 9,302
Marshalltown 2,259 - 1,855
Sioux City 3,209 3,143 3,295
Fort Dodge 2,659 2,492 -
Des Moines 10,745 9,721 9,351
Council Bluffs 3,706 3,843 4,256
Burlington 3,444 3,423 3,448
Cedar Falls/Waterloo 4,120 3,479 3,700
Total 41,363 36,656 35,207
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Table 7 
Percentage of excluded data due to speed 

 

 

Contrary to some of the literature (Saaroni et al. 2000; Wong and Yu 2005; 

Voelkel and Shandas 2017), vehicle speeds ranging from non-stationary speeds to 55.11 

mph showed no influence on air temperature when tested using linear regression of all 

measured temperatures using the software TIBCO Spotfire S+, results presented an R² = 

0.0008034, and a p-value of 0.000 (Figure 14). Although the results were statistically 

significant by p-value, given the speeds at which the vehicles were driven (average of 

less than 20 miles per hour), each one-mile-per-hour increase in speed would reduce the 

temperature by only 0.015 Celsius degrees, which is considered a negligible variance in 

temperature when accounting the accuracy of the devices and driving speeds. 
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Figure 14 
Linear regression for measured temperatures vs speed 

 

 

As a general reference, a comparison was made between measured data and those 

collected by locally established weather stations. When comparing the maximum 

recorded temperature for each urban area to the closest weather station’s maximum 

measured air temperature for the day, the variation ranged between 1°C in Waterloo/CF 

(minimum difference) and 4.1°C in Marshalltown (maximum difference). In all instances, 

the lower temperature was recorded by weather stations (Figure 15). The local weather 

stations are often located in an open area without nearby buildings such as an airport, 

which could explain the variation of temperature between the stations and the mobile 

devices. 
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Figure 15 
Maximum air temperature collected by mobile sensors vs. weather stations 

 

 

The variation of air temperature in the period of one hour, regardless of the time 

of the day, never exceeded 5.66 °C, which was the case in Waterloo/CF area during the 

evening. Four out of eight urban areas (Burlington, Council Bluffs, Des Moines, and 

Waverly), experienced a higher thermal variation during the afternoon (compared to 

evening), four areas (Cedar Rapids, Fort Dodge, Waterloo, and Cedar Falls) experienced 

a higher thermal variation during the evening, and only one area (Sioux City) experienced 

the highest variation in temperature among all times of the day during the night period as 

seen in Table 8. 
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Table 8 
Amplitude of air temperature measured in urban areas 

 

 

The minimum and maximum temperatures, as well as the average recorded 

temperature of each urban area can be seen in tables 9, 10, and 11. 

 

Table 9 
Minimum measured temperature in urban areas 

 

 

Table 10 
Maximum measured temperature in urban areas 

 

URBAN AREA
AMPLITUDE OF AIR 

TEMPERATURE AFTERNOON 
AMPLITUDE OF AIR 

TEMPERATURE EVENING (°C)
AMPLITUDE OF AIR 

TEMPERATURE NIGHT (°C)
Burlington 3.71 2.52 1.90
Cedar Rapids 3.47 3.52 3.21
Council Bluffs 4.80 3.20 2.93
Des Moines 4.15 3.16 2.35
Fort Dodge 4.26 5.51 -
Marshalltown 4.11 - 1.09
Sioux City 3.10 3.25 4.01
WaterlooCF 4.22 5.66 1.05
Waverly 2.93 2.25 -

 URBAN AREA
MINIMUM AIR TEMPERATURE 

AFTERNOON (°C)
MINIMUM AIR TEMPERATURE 

EVENING (°C)
MINIMUM AIR TEMPERATURE 

NIGHT (°C)
Burlington 31.41 28.47 25.92
Cedar Rapids 32.50 25.95 22.36
Council Bluffs 27.84 23.40 18.66
Des Moines 35.62 29.75 26.95
Fort Dodge 30.34 22.09 -
Marshalltown 32.79 - 21.33
Sioux City 32.75 27.15 22.04
WaterlooCF 32.35 23.15 22.14
Waverly 34.73 28.27 -

 URBAN AREA
MAXIMUM AIR TEMPERATURE 

AFTERNOON (°C)
MAXIMUM AIR TEMPERATURE 

EVENING (°C)
MAXIMUM AIR TEMPERATURE 

NIGHT (°C)
Burlington 35.12 30.99 27.82
Cedar Rapids 35.97 29.47 25.57
Council Bluffs 32.64 26.60 21.59
Des Moines 39.77 32.91 29.30
Fort Dodge 34.60 27.60 -
Marshalltown 36.90 - 22.42
Sioux City 35.85 30.40 26.05
WaterlooCF 36.57 28.81 23.19
Waverly 37.66 30.52 -
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Table 11 
Average measured temperature in urban areas 

 

 

In order to determine if temperature data was collected during unusually hot days, 

a brief analysis was conducted by comparing the temperature readings from mobile 

sensors on the observation day to the average high temperatures recorded over the past 10 

years for both the specific month and day at the nearest local weather station. A total of 

seven out of 10 areas exceeded the 90th percentile, and five urban areas (Burlington, 

Cedar Falls, Des Moines, Waterloo, and Waverly) experienced the hottest day of the 

month.  

Figures 16 to 39 display the routes and resulting measured temperatures displayed 

as the temperature in degrees Celsius (note, the upper and lower limit varies per map) in 

each urban area by the time of collection. The figures are presented in alphabetical order 

based on the urban area's name, and the time of collection follows a chronological order 

(afternoon to night). 

Visually inspecting the temperatures collected in each urban area showed 

observations consistent with the literature. The lowest temperatures were usually 

collected close to or in highly vegetated areas, while the highest temperatures were often 

 URBAN AREA
AVERAGE AIR TEMPERATURE 

AFTERNOON (°C)
AVERAGE AIR TEMPERATURE 

EVENING (°C)
AVERAGE AIR TEMPERATURE 

NIGHT (°C)
Burlington 33.48 29.84 26.86
Cedar Rapids 34.10 28.07 24.12
Council Bluffs 29.86 25.05 20.40
Des Moines 37.33 31.44 28.47
Fort Dodge 32.39 25.16 -
Marshalltown 34.87 - 21.96
Sioux City 33.80 28.91 24.09
WaterlooCF 34.93 26.64 22.67
Waverly 35.93 29.81 -
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collected in areas such as downtown or with a large number of built-up structures (e.g., 

industrial parks). 

This was observed in the case of Burlington (Figures 16 to 18), where the 

downtown area emerged as the hottest region. However, somewhat unexpectedly, the 

Mississippi River, located to the east of downtown, did not appear to exert a significant 

influence on temperature regulation. While it is well-known that large bodies of water aid 

in mitigating urban heat, and the density of built structures in the southern part of the city 

does not differ significantly from that in the downtown area, the absence of vegetation in 

the vicinity seemed to have the greatest impact when comparing the two regions. This 

disparity resulted in a substantial temperature difference, with the southernmost area 

exhibiting significantly cooler temperatures. The temperature patterns remained 

consistent for all times of collection. 
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Figure 16 
Measured temperature in Burlington during the afternoon 
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Figure 17 
Measured temperature in Burlington during the evening 
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Figure 18 
Measured temperature in Burlington during the night 

 

Cedar Rapids (Figures 19 to 21) generally showed the same heat patterns at all 

times of collection, although the night period had one extra route (in the northeast area as 

seen in Figure 21). The areas close to downtown (especially in the night readings), and 

along Interstate 380 had the highest temperature measurements, regardless the time of 

collection. 

  



64 
 

Figure 19 
Measured temperature in Cedar Rapids during the afternoon 
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Figure 20 
Measured temperature in Cedar Rapids during the evening 
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Figure 21 
Measured temperature in Cedar Rapids during the night 

 

In Council Bluffs (Figures 22 to 24) the coldest temperatures at all times of the 

day were seen in the northern part of the city. The results seem to be explained by higher 

altitudes (50+ meters compared to downtown) in addition to being highly vegetated areas. 

Interestingly, in the southern region of the city, regardless of the presence of a large body 

of water (Lake Manawa) and being the most vegetated area, temperatures were on par 

with the warmest areas of the town (downtown). 
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Figure 22 
Measured temperature in Council Bluffs during the afternoon 
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Figure 23 
Measured temperature in Council Bluffs during the evening 
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Figure 24 
Measured temperature in Council Bluffs during the night 

 

The capital Des Moines (Figures 25 to 27) seem to be a clear indication of the 

concept that large built-up structures, such as buildings, absorb heat during the day 

releasing it during the night through convection. While downtown, Capitol East, and 

areas close to Union Pacific Shortline Yard (train yard), were the warmest parts of the 

city throughout all times of collection, the heat in the same area seemed to be exacerbated 

(in area) by the number and volume of manmade structures during the night period, as 

can be seen in the Figure 26 and Figure 27. The lowest temperatures, however, were 

collected in areas such as Southwestern Hills close to Des Moines International Airport, 

and Des Moines Water Works Park. 
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Figure 25 
Measured temperature in Des Moines during the afternoon 
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Figure 26 
Measured temperature in Des Moines during the evening 
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Figure 27 
Measured temperature in Des Moines during the night 

 

As with most cities, the airport is located in open areas and without large built-up 

structures in its surroundings, and thus it is not surprising that those surroundings 

presented low temperatures regardless of the time of collection. That was also the case for 

Fort Dodge during the afternoon and evening (Figure 28, and Figure 29, respectively).  

As expected, the warmest part of the city was in its center, which is occupied by many 

buildings and large parking lots. 
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Figure 28 
Measured temperature in Fort Dodge during the afternoon 
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Figure 29 
Measured temperature in Fort Dodge during the evening 

 

Marshalltown (Figure 30, and Figure 31) presented consistent patterns throughout 

both collections (afternoon, and night), where downtown was where the highest 

temperatures were observed. Despite the fact that a strong rainfall hit the area during the 

evening, which prevented the second run to be executed, night collection showed the 

same areas as the highest and lowest temperatures, however, the differences between 

minimum and maximum temperatures collected were one of the smallest measured 

throughout all study areas, only 1.09°C.  
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Figure 30 
Measured temperature in Marshalltown during the afternoon 
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Figure 31 
Measured temperature in Marshalltown during the night 

 

Out of all 10 different urban areas, Sioux City showed somewhat the most unique 

results, where the area with the highest temperature in the afternoon was not the same 

compared to collections performed during the evening and night periods. In the afternoon 

(Figure 32), the highest temperature was collected close to a segment of the CN Railroad 

with Highway 20, whereas the highest temperature collected during the evening (Figure 

33) was at the border with Nebraska (south) with Hamilton Boulevard, and the highest 

temperature collected during the nighttime (Figure 34) was in a residential area west of 

Isabella Street. The lowest temperatures were collected in the southeast part of the city, 

regardless the time of collection. 
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Figure 32 
Measured temperature in Sioux City during the afternoon 
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Figure 33 
Measured temperature in Sioux City during the evening 
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Figure 34 
Measured temperature in Sioux City during the night 

 

The study area named Waterloo-Cedar Falls (Figure 35 to Figure 37) showed 

consistent temperature patterns throughout all times of collection. The highest 

temperatures were measured in downtown Waterloo; along University Avenue, which 

connects the cities of Cedar Falls to Waterloo; and the area close to the University of 

Northern Iowa, which, although vegetated, presented a high volume for built-up 

structures (e.g., buildings, parking lots), which is thought to have contributed to the high 

temperatures measured by the mobile device. As expected, the lowest temperatures were 

collected in the most vegetated area, Hartman Reserve Nature Center, and in the 

southwest part of Cedar Falls by Greenhill Road, which presents low density for built-up 

structures. 
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Figure 35 
Measured temperature in Waterloo/Cedar Falls during the afternoon 
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Figure 36 
Measured temperature in Waterloo/Cedar Falls during the evening 
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Figure 37 
Measured temperature in Waterloo/Cedar Falls during the night 

 

Finally, the City of Waverly (Figure 38, and Figure 39) seems to show a 

considerable influence of bodies of water regulating urban heat. Although the highest 

temperatures in the city were measured in areas with the highest amount of built-up 

structure, the lowest temperatures were measured in highly vegetated areas, especially 

close to Three Rivers Park by the Cedar River. 
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Figure 38 
Measured temperature in Waverly during the afternoon 
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Figure 39 
Measured temperature in Waverly during the evening 

 

 

Random Forest Model Results 

A total of 24 modeled (predicted) raster surface files, one for each urban area at 

each time of the day (afternoon, evening, and night) were produced, and are illustrated in 

alphabetical order and by time of the day.  

The results showed an average R² of 0.947 for the afternoon models, R² of 0.973 

for the evening models, and R² of 0.987 for the nighttime. Most study areas had models 

of over R² 0.95 (20 out of 24 models), which is considered not only very strongly 

statistically significant but similar or higher R² values as compared to other studies that 

made use either of random forest (e.g., Voelkel and Shandas 2017; Shandas et al. 2019), 

or other statistic algorithms/techniques (e.g., Yokobori and Ohta 2009; Chen et al. 2020).                          
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Table 12 presents the predictive model results (R²) for every urban area by time of 

the day. 

 

Table 12 
Random Forest results for every urban area/time of the day 

 

 

Considering all predictive surface raster models generated by Forest-based 

Classification and Regression algorithm results varied from an R² of 0.879 (p-value 

<0.00, standard error of 0.011), the lowest proportion of variance in air temperature 

explained by the independent variables, to an R² of 0.997 (p-value of 0.00, and standard 

error of 0.002), the highest proportion of variance in air temperature explained by the 

independent variables. These results were respectively Sioux City in the afternoon, and 

Council Bluffs in the night.  

Analyzing p-values and standard errors for each result showed that all results are 

very statistically significant, with p-values of <0.000, and standard errors not higher than 

0.011 as seen in table 13. 

 

URBAN AREA AFTERNOON R² EVENING R² NIGHT R²
Burlington 0.978 0.995 0.994
CedarRapids 0.923 0.956 0.987
Council Bluffs 0.982 0.989 0.997
DesMoines 0.952 0.984 0.988
FortDodge 0.952 0.974 -
Marshalltown 0.956 - 0.963
Sioux City 0.879 0.974 0.987
WaterlooCF 0.975 0.994 0.99
Waverly 0.93 0.915 -
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Table 13 
Standard error of Random Forest for every urban area/time of the day 

 

 

When accounting for the top 5 variables that explain the most variance in 

temperature by urban area and time of the day, NDVI, regardless of the statistical type 

used or distance, appears as the most consistent variable, showing as being the most 

important variable in 14 out of 24 models. The second most consistent variable in 

explaining the variation in temperature is BH (6 out of 24 models), followed by CDM (3 

out of 24), and CC (1 out of 24 models). Regarding neighbor distances, when analyzing 

all 120 different most important variables (the 5 most important variables per each one of 

the 24 models), the 800 meters distance accounts for 52.5% of all variables, followed by 

400 meters (20%), 200 meters (15.83%), 100 meters (8.33%), and 50 meters (3.33%). 

These results showed that the average occurrence of morphometric features (natural and 

built-up) in small neighbor distances has a smaller statistical influence on urban 

temperatures when compared to larger neighbor distances (e.g., the average building 

height in a 50 meters radius seems to have considerably less statistical 

significance/influence in generating the predictive models than the average for building 

height in 800 meters radius). Considering the statistic method of central tendency (mean 

vs. standard deviation), mean seems to have higher statistic influence on the predictive 

URBAN AREA AFTERNOON STD. ERROR EVENING STD. ERROR NIGHT STD.ERROR
Burlington 0.005 0.002 0.002
CedarRapids 0.006 0.004 0.002
Council Bluffs 0.004 0.003 0.002
DesMoines 0.004 0.002 0.002
FortDodge 0.007 0.006
Marshalltown 0.008 0.008
Sioux City 0.011 0.005 0.004
WaterlooCF 0.005 0.002 0.001
Waverly 0.007 0.009
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models than standard deviation has, appearing in 72.5% as one of the 5 most important 

variables per model as seen in Table 14. 

  

Table 14 
Table of most important variables by urban areas/time of the day 

 

 

The percentage that is explained by the five most important variables per model 

varied greatly, from 38% (Cedar Rapids/Evening and Waverly/Evening) to 65% 

(Burlington/Night), and the percentage explained by the most important variable varied 

from 10% (Cedar Rapids/Evening and Waverly/Evening) to 27% (Burlington/Night). 

Even though the exact same models (Cedar Rapids/Evening and Waverly/Evening) fall 

into the highest and lowest percentage explained by the five most important variables and 

the most important variables, this analysis falls outside of the scope of this study’s 

objectives. However, the author believes that more testing would be needed since the 

models that have the higher and lower explanation by the five and most important 

variables are not necessarily the ones presenting the higher or lower R² coefficients. 

CITY TIME OF THE DAY 1ST VARIABLE 2ND VARIABLE 3RD VARIABLE 4TH VARIABLE 5TH VARIABLE % EXPLAINED BY 1ST VARIABLE % EXPLAINED BY 5 TOP VARIABLES
Council Bluffs Afternoon CC_Mean800 CC_STD800 CDM_STD400 CDM_STD800 NDVI_Mean800 19 55
Council Bluffs Evening CDM_STD800 CDM_Mean800 CDM_STD400 CC_Mean800 CDM_Mean400 24 62
Council Bluffs Night CDM_STD800 CDM_Mean800 CDM_STD400 NDVI_Mean200 NDVI_Mean800 26 59
DesMoines Afternoon NDVI_Mean400 NDVI_Mean100 NDVI_Mean800 NDVI_Mean50 NDVI_Mean200 12 47
DesMoines Evening BH_Mean800 NDVI_Mean400 NDVI_Mean200 CDM_STD800 NDVI_Mean800 11 40
DesMoines Night NDVI_Mean800 NDVI_Mean100 NDVI_Mean400 BH_Mean800 BV_Mean800 15 41
Marshalltown Afternoon NDVI_Mean400 NDVI_Mean800 NDVI_Mean200 BH_STD800 NDVI_Mean50 19 57
Marshalltown Night BH_Mean800 NDVI_Mean800 NDVI_Mean400 NDVI_Mean200 BH_STD800 19 64
CedarRapids Afternoon NDVI_Mean400 NDVI_Mean800 NDVI_Mean100 NDVI_Mean200 NDVI_STD800 12 42
CedarRapids Evening CDM_STD800 BH_STD800 NDVI_Mean800 CDM_Mean800 BV_Mean800 10 38
CedarRapids Night BH_Mean800 NDVI_Mean100 BH_Mean400 NDVI_STD800 NDVI_Mean200 15 46
Burlington Afternoon NDVI_Mean400 NDVI_Mean200 NDVI_Mean800 BH_STD800 NDVI_Mean100 23 58
Burlington Evening NDVI_Mean400 NDVI_Mean800 NDVI_STD800 CC_STD800 NDVI_Mean200 20 57
Burlington Night NDVI_Mean800 NDVI_Mean400 BH_STD800 NDVI_STD800 CC_STD800 27 65
FortDodge Afternoon NDVI_Mean800 BH_Mean400 BH_Mean200 BH_Mean800 BV_Mean800 16 40
FortDodge Evening BH_Mean400 BH_STD200 BH_Mean800 BH_Mean200 BH_STD400 18 57
Waverly Afternoon BH_STD400 BH_Mean200 BV_Mean200 BH_STD200 NDVI_Mean200 16 42
Waverly Evening BH_Mean400 CC_STD800 BH_STD400 NDVI_Mean800 BV_Mean800 10 38
WaterlooCF Afternoon NDVI_Mean50 NDVI_Mean800 CDM_Mean100 NDVI_Mean100 CC_Mean200 14 50
WaterlooCF Evening NDVI_Mean200 NDVI_Mean800 NDVI_Mean400 CDM_Mean100 NDVI_Mean50 20 63
WaterlooCF Night NDVI_Mean800 NDVI_Mean400 NDVI_Mean200 BV_Mean800 NDVI_Mean100 22 56
Sioux City Afternoon NDVI_STD400 NDVI_STD800 CC_Mean800 BV_Mean100 BH_Mean800 13 40
Sioux City Evening NDVI_Mean800 NDVI_Mean400 CC_Mean800 NDVI_STD800 CC_STD800 17 46
Sioux City Night NDVI_STD800 NDVI_Mean800 BH_STD800 CC_Mean800 CDM_STD800 17 53

MOST IMPORTANT VARIABLESURBAN AREA PERCENTAGE OF EXPLANATION BY MOST IMPORTANT VARIABLE(S)
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Analyzing the predictive raster surface models generated for each study area, 

most of the results are seen as satisfactory (based on the coefficient R²), and similar to 

other studies such as those conducted by Voelkel and Shandas (2017). Evaluating the 

models visually by study area and time of the day, all predictive raster surfaces (Figures 

40 to 63) followed the patterns seen during the air temperature collection phase.  

In Burlington (Figures 40 to 42), models showed the highest temperatures in the 

east part of the city, which is exactly what was seen when contrasted with the air 

temperature collected in the area. 

 

Figure 40 
Modeled raster surface for Burlington afternoon  
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Figure 41 
Modeled raster surface for Burlington evening 
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Figure 42 
Modeled raster surface for Burlington night 

 

The predictive raster surface model for Cedar Rapids showed no extraordinary 

findings, where similarly to Burlington and Council Bluffs, the warmest areas were seen 

in downtown or close to areas that are heavily occupied by built-up structures. Even 

though the afternoon (Figure 43) and evening run (Figure 44) in Cedar Rapids had no 

recordings for one out of 3 runs (33% of the projected air temperature collection area), 

the modeled temperature showed a smaller but acceptable decline in predictability of 

around 3.2% compared to the evening model (afternoon R² of 0.923 vs. evening R² of 

0.956), and 6.4% compared to the night model (afternoon R² of 0.923 vs. night R² of 

0.987). Figure 45 shows the night model for Cedar Rapids. 
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Figure 43 
Modeled raster surface for Cedar Rapids afternoon 
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Figure 44 
Modeled raster surface for Cedar Rapids evening 
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Figure 45 
Modeled raster surface for Cedar Rapids night 

 

Even though the study conducted by Hathway and Sharples (2012) examined the 

interaction of rivers in mitigating urban heat, their findings can be used to explain what 

was seen in the models of areas such as Burlington and Council Bluffs (Figures 46 to 48), 

where bodies of water did not show a great influence in cooling the temperatures off after 

certain distances (the mentioned studies showed no influences in areas farther than 40m 

to 100m from the river banks and in a city like Burlington where measurements took 

place hundreds of meters from the river in the relatively un-vegetated and high building 

volume downtown area it is not surprising the river showed little to no influence in the 

temperatures). 
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Figure 46 
Modeled raster surface for Council Bluffs afternoon 
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Figure 47 
Modeled raster surface for Council Bluffs evening 
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Figure 48 
Modeled raster surface for Council Bluffs night 

 

Due to the density of buildings and lack of highly vegetated areas, Des Moines 

(Figures 49 to 51) had resulted in three predictive models with areas of concentrated 

higher temperatures throughout most of the study area. However, in analyzing the 

models, it seems that the areas of extreme heat seen in the afternoon model extrapolate to 

a larger radius in the evening and night models, which is consistent with the radiative 

models of energetic basis suggested by the literature (e.g., Oke 1987) and consists in the 

urban canopy absorbing energy through solar radiation during the day, and losing energy 

through convection during the night, potentially warming up the air surrounding areas 

with high density of built-up structures. 
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Figure 49 
Modeled raster surface for Des Moines afternoon 
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Figure 50 
Modeled raster surface for Des Moines evening 
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Figure 51 
Modeled raster surface for Des Moines night 

 

Although examining weather patterns in detail go beyond the scope of this study, 

besides the heat released by built-up structures, winds can be an active force in changes 

of air temperature during night periods (Oke 1983). It can be speculated that either winds 

or other atmospheric conditions could have influenced the shifts in air temperature 

patterns seen in the two models (afternoon, and evening) for Fort Dodge (Figure 52 and 

Figure 53), and the two models for Marshalltown (Figure 54 and Figure 55), which are 

consistent with the temperature measured during the collection stage of this study. 
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Figure 52 
Modeled raster surface for Fort Dodge afternoon 
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Figure 53 
Modeled raster surface for Fort Dodge evening 
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Figure 54 
Modeled raster surface for Marshalltown afternoon 
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Figure 55 
Modeled raster surface for Marshalltown night 

 

Of all 24 predictive raster surface models, Sioux City afternoon (Figure 56) 

presented the lowest R² of 0.879. Differently than other models, small areas of low 

temperatures can be seen surrounded by warmer areas, which is unique to that study area 

and time of collection. The consistency of the routes performed in Sioux City (Figures 56 

to 58), and the use of the exactly same devices for temperature data collection in later 

measurements eliminates the possibility of malfunctioning devices or that routes were 

performed in non-representative areas for the city. Results for the period of evening (R² 

0.974) and night (R² 0.984) reinforce the idea that factors beyond the scope of this 

research might have influenced the data collection in the afternoon (e.g., weather). 
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Figure 56 
Modeled raster surface for Sioux City afternoon 
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Figure 57 
Modeled raster surface for Sioux City evening 
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Figure 58 
Modeled raster surface for Sioux City night 

 

The only study area that comprised two different cities (Waterloo–Cedar Falls) 

showed modeled temperature rasters consistent with the temperature collected at all times 

of the day (Figures 59 to 61). The proportion of buildings in areas such as downtown 

Waterloo, downtown Cedar Falls, and the University of Northern Iowa campus 

influenced the high temperatures seen in those areas, especially during the nighttime, 

which is supported by the most important variables for that model (NDVI and BV). 
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Figure 59 
Modeled raster surface for Waterloo/Cedar Falls afternoon 
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Figure 60 
Modeled raster surface for Waterloo/Cedar Falls evening 
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Figure 61 
Modeled raster surface for Waterloo/Cedar Falls night 

 

Finally, the models generated for Waverly (Figure 62 and Figure 63), show a 

distinctive pattern for the afternoon model, presenting small areas of high heat, although 

generally consistent with the temperature collected in the area. Given that building height 

calculated as standard deviation (BH_STD) was only seen as the most important variable 

in this model in specific (other models presented building height as the most important 

variable but calculated as Mean), it is believed that this pattern can be the result of the 

influence of that specific variable.  
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Figure 62 
Modeled raster surface for Waverly afternoon 
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Figure 63 
Modeled raster surface for Waverly night 

 

In addition to the statistics output by the modeling, when comparing the predicted 

raster surface models with measured temperatures in each study area by the time of the 

day, values were presented with differences no higher than 0.5°C degrees for minimum 

temperatures (Waterloo/Cedar Falls - Evening) and no lower than 0.46°C degrees for 

maximum temperatures (Council Bluffs – Afternoon). Table 15 shows all cities and the 

time of collection with the difference of measured and predicted temperature for 

minimum and maximum temperatures. 
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Table 15 
Measured vs predicted temperature by urban area/time of the day 

 

 

An example of measured temperatures overlapping predicted temperatures can be 

seen in the examples for Des Moines afternoon, Des Moines evening, and Des Moines 

night (Figures 64 to 66). 
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Figure 64 
Overlap of measured temperature and predicted temperature in Des Moines (afternoon) 
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Figure 65 
Overlap of measured temperature and predicted temperature in Des Moines (evening) 
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Figure 66 
Overlap of measured temperature and predicted temperature in Des Moines (night) 

 

 

Temperature and socio-demographics 

In order to examine the variation in modeled air temperature across 

neighborhoods with different socio-demographic characteristics in each urban area, 

collected air temperature were summarized by block groups. Income data was 

downloaded directly from Census populational data website (Census 2022) and 

represented the Median Household Income per block group in 2021. This income data 

comes from the American Community Survey (ACS – 5 years estimate). To understand 

how underrepresented populational groups face urban heat, a dataset containing the total 

population per block group by race was also utilized. 
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A unique variable considering the percentage of non-white population per census 

block group was calculated since it has been seen through the literature (e.g., Hattis et al. 

2012, Voelkel et al. 2018) that no particular minority group is exempt from experiencing 

higher temperatures than non-marginalized groups. The outcome provided by the tool 

Zonal Statistics as Table in ArcGIS Pro provided the mean modeled air temperature by 

block group in each one of the 10 Urban areas by all times of the day (when available) 

utilizing the predicted surface raster model. This allowed for a comparison of the median 

household income and percentage of non-white population which were already held per 

geographical area. 

Results acquired from running the formula for Pearson correlation coefficient in 

Microsoft Excel Professional Plus 2021 for Income and modeled air temperature showed 

values ranging from -0.0125 (the lowest correlation) to -0.5948 (the highest correlation). 

Those two values represent the results for Waverly/Evening and Marshalltown/Afternoon 

respectively. As can be seen in Table 16, all values presented a negative correlation (all 

values highlighted in bold have a statistically significant p-value <0.05), which is 

consistent with the literature that suggests that areas with higher income experience less 

heat than areas with lower income. Out of 24 total results, one per each time of collection 

and urban area, 4 results fell into moderate negative correlation (-0.5< r <-0.70), with the 

remaining values falling into either low negative correlation (-0.3<r<-0.50) or very low 

negative correlation (r<-.03).   
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Table 16 
Pearson correlation coefficient for income vs. air temperature 

 

 

Results of a linear regression considering the median household income per block 

group as the dependent variable and mean modeled air temperature per block group as an 

independent variable showed mixed results. While most urban areas/times of the day 

showed statistically significant relation to income (p-value > 0.15), the adjusted R² 

presented values over 0.20 only in 5 areas/time of the day (Marshalltown and 

Waterloo/Cedar Falls in all collection times), showing a rather weak but significant 

correlation between income and measured air temperature as can be seen in Table 17. As 

Table 17 illustrates, some urban areas/times of the day provided a weak relationship 

between median household income and mean air temperature, with the strongest 

relationship in Marshalltown during the afternoon, with an R² of 0.328 and a p-value of 

0.0011.  
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Table 17 
Linear regression of median household income and mean air temperature by block group 

 

 

A table showing the highest adjusted R² (>0.19) found when examining the 

correlation between modeled air temperature and income by block group can be seen in 

Table 18, altogether with the corresponding slope value for each area/time of the day. 

 

Table 18 
Highest Random Forest adjusted R2 for income vs modeled air temperature 

 

 

All cities with the highest adjusted R² presented a negative slope, which can be 

interpreted as the lower the income the higher temperature experienced by residents in 

the block groups of the urban areas. Even though some urban areas do present a negative 

value for R², those are not statistically significant to draw any conclusion. 

URBAN AREA AFTERNOON R2 P-VALUE EVENING R2 P-VALUE NIGHT R2 P-VALUE
Burlington 0.1054 0.0301 0.1500 0.0113 0.0759 0.0572
Cedar Rapids 0.1227 0.0003 0.0613 0.0094 0.1120 0.0006
Council Bluffs 0.1057 0.0057 0.1641 0.0006 0.1976 0.0002
Des Moines 0.1969 0.0000 0.0599 0.0002 0.1042 0.0000
Fort Dodge 0.0263 0.2120 0.0878 0.0819
Marshalltown 0.3280 0.0011 0.3089 0.0015
Sioux City 0.0835 0.0065 0.0945 0.0040 0.0450 0.0365
Waterloo/CF 0.2142 0.0000 0.2944 0.0000 0.2787 0.0000
Waverly 0.0316 0.2883 -0.1248 0.9727

LINEAR REGRESSION - MEDIAN AIR TEMP - MEDIAN INCOME (BY BLOCK GROUP)

URBAN AREA TIME OF THE DAY R2 P-VALUE SLOPE
Marshalltown Afternoon 0.3280 0.0011 -22984.1114
Marshalltown Night 0.3089 0.0015 -72702.2765
Waterloo/CF Evening 0.2944 0 -42149.6499
Waterloo/CF Night 0.2787 0 -28218.7518
Waterloo/CF Afternoon 0.2142 0 -152507.3410

HIGHEST ADJUSTED R2 WITH STATISTICAL SIGNIFICANCE
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When considering the proportion of non-white residents in each urban area per 

block group, the outputs of Pearson correlation coefficient and linear regression showed a 

variety of results, however, different than those seen in other studies (e.g., Shandas 2019). 

In this study, in most urban areas, ethnicity doesn’t seem to be highly statistically 

significantly correlated to higher temperatures.  Table 19 depicts the Pearson correlation 

coefficient results for all urban areas and time of the day with values ranging from -

0.0078 to 0.4422 (all values highlighted in bold have a statistically significant p-value 

<0.05), which were the results obtained for Waverly/Evening and Sioux City/Evening 

respectively. It is worth mentioning that Waverly Evening was the only negative 

coefficient of all, and it is believed that due to the small sample size (only 10 block 

groups in total within the urban area), the results can’t be considered as statistically 

significant in this situation. 

 

Table 19 
Person correlation coefficient for ethnicity vs. air temperature 

 

 

Out of 24 coefficients for all urban areas and time of collection, only 6 values 

presented a low positive correlation between ethnic minorities presence and air 

temperature (r> 0.3), while the remaining 18 values fell into very low correlation (r<0.3). 
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The linear regression results for each area/time of the day can be seen in Table 20, with 

its respective R² and statistical significance. 

 

Table 20 
Linear regression of median air temperature and proportion of minority groups by block 
group 

 

 

With the exception of a few areas which account for a small number of block 

groups, as for example Waverly (10), Fort Dodge (28), and Marshalltown (30), which 

were expected to present a low to non-statistical significance in the linear regression 

models, the urban area of Burlington and Council Bluffs, also presented a p-value that 

categorizes all their results as non-statistically significant (p-value > 0.15), even though 

the number of blocks in those areas was considerably higher than in the previously 

mentioned urban areas. The areas/time of the day that presented the highest adjusted R² 

and very strong statistical significance can be seen in Table 21, which also shows the 

slope values for each individual model. 

 

URBAN AREA AFTERNOON R2 P-VALUE EVENING R2 P-VALUE NIGHT R2 P-VALUE
Burlington 0.0073 0.2654 0.0070 0.2671 -0.0136 0.4875
Cedar Rapids 0.0836 0.0024 0.0646 0.0069 0.0724 0.0045
Council Bluffs -0.0010 0.3370 -0.0018 0.3514 0.0018 0.2937
Des Moines 0.0775 0.0000 0.0556 0.0003 0.0630 0.0001
Fort Dodge -0.0026 0.3439 0.0149 0.2461
Marshalltown -0.0285 0.6604 -0.0341 0.8366
Sioux City 0.0493 0.0260 0.1853 0.0000 0.1738 0.0001
Waterloo/CF 0.0867 0.0066 0.1548 0.0003 0.1578 0.0003
Waverly -0.0690 0.5354 -0.1249 0.9829

LINEAR REGRESSION - MEDIAN AIR TEMP - MINORITY GROUP (BY BLOCK GROUP)



121 
 

Table 21 
Highest adjusted R2 for proportion of minorities vs measured air temperature 

 

 

Out of all 24 models, Sioux City and Waterloo/Cedar Falls presented the most 

significant results. The highest adjusted R² of all models presented a value of 0.1853, a p-

value of 0.0000, and a slope of 0.2652. This means for each degree increase in 

temperature (°C), the proportion of minority groups increases in 0.2652 (26.52%). Even 

though, the results presented in Table 21 are all statistically significant, the explanation 

capacity of the linear regression models suggests that there are other components that 

account for the relationship between variation of temperature and the presence of 

minority ethnical groups in each block group. Figure 67 presents a comparison between 

the modeled evening temperature in Sioux City (with the highest adjusted R² among all) 

and the distribution of ethnic minorities in the same region, allowing for a visual 

inspection of their relationship. 

 

URBAN AREA TIME OF THE DAY R2 P-VALUE SLOPE
Sioux City Evening 0.1853 0.0000 0.2652
Sioux City Night 0.1738 0.0001 0.1235
Waterloo/CF Night 0.1578 0.0003 0.8279
Waterloo/CF Evening 0.1548 0.0003 0.1454
Waterloo/CF Afternoon 0.0867 0.0066 0.1872

HIGHEST ADJUSTED R2 WITH STATISTICAL SIGNIFICANCE
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Figure 67 
Predicted surface raster temperature and proportion of non-whites per block group in 
Sioux City (evening) 
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Chapter 5 

Discussions and Conclusions 

Discussion 

This study resulted in a systematic examination of temperature patterns across a 

variety of urban areas in Iowa based on an extensive in-field temperature monitoring 

regime (collecting during the afternoon, evening and night, consistently for one hour in 

each data collection timeframe) and a highly detailed spatial statistical modeling effort, 

leading to unique results. The three selected times for data collection were based on 

existing literature aiming to comprehend urban heat patterns. Specifically, the study by 

Oke (1982) established that urban areas experience their highest air temperatures between 

2 p.m. and 5 p.m., (corresponding to the afternoon data collection), and densely urban 

areas exhibit the most significant air temperature differences compared to non-built-up 

regions a few hours after sunset (corresponding to our evening data collection). 

Moreover, the nighttime period, known to worsen health issues related to heat exposure, 

has been emphasized in studies such as Basu (2009), Heaviside et al. (2017), and Voelkel 

et al. (2018), being the reason why air temperature data collection also occurred during 

the night (4 a.m. to 5 a.m.) in the current research. 

The temperature data were measured across a variety of land uses in multiple 

Iowa cities at multiple times of the day resulting in the observation of varying 

temperature patterns. This sampling effort led to a unique and robust dataset for air 

temperature measurements (more than 110,000 temperature points were collected) in ten 

different areas of diverse urban features. Even though methods of air temperature 

collection measured by mobile devices have been researched in previous studies (e.g., 
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Hart and Sailor, 2008; Yokobori and Ohta, 2009; Voelkel and Shandas, 2017), this study 

represents a novel effort to collect data across multiple urban areas in a single state. 

Temperature collection routes were designed to capture temperature data across a variety 

of urban land uses thus providing the necessary data required for the development of 

geospatial models with high predictive power throughout most, if not all urban areas.  

Modeled results generated by random forest algorithms resulted in coefficients 

that varied from an R² of 0.879 to 0.997 (all statistically significant), with most 

coefficients resulting in R² higher than  0.95, which seemed consistent with other studies 

utilizing mobile sensors for temperature data collection, LiDAR data and/or aerial 

imagery to derive independent variables, and RF as machine learning algorithm as seen in 

Voelkel and Shandas (2017), Shandas et al. (2019), and Oukawa et al. (2022). These 

outcomes strongly indicate that the chosen independent variables and neighborhood 

distances were effective in generating modeled outcomes that are theoretically consistent 

with existing literature. In some cases, the predictive power of the results exceeds the 

ones found in previous studies, for example as in Voelkel et al. (2018), which results for 

the city of Portland presented an R² of 0.8199 for the model utilizing temperatures 

collected during the afternoon. Even though the collected air temperature data provided 

enough information for statistically significant predictive models to be developed, it is 

not certain how the model would perform if data were collected at different times of the 

day. Predicted surface raster temperatures in this study were found to be within a very 

similar range of collected air temperature, showing the expected consistency between 

collected air temperature and predicted air temperature. In addition, it is unclear how 
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predictive models would have performed if air temperature data were collected 

throughout different routes in the chosen urban areas. 

The results found by modeling and predicting the air temperature in different 

areas showed similarity with previous studies such as in Voelkel et al. (2018) and 

Shandas et al. (2019), where the highest predictive power was seen during the evening or 

night periods. The number of independent variables, even though they were divided into 

different neighborhood scales (50, 100, 200, 400, and 800 meters), showed that no 

statistically significant improvements in air temperature predictability would be seen if 

additional variables such as wind speed, albedo of buildings and roads, radiation, sky 

view factor, or housing density, were introduced.   

Although a similar approach to air temperature collection (through the use of mobile 

sensors) and to derive independent variables were used in this study compared to the 

existent literature, the amount of temperatures collected in each study area and the 

number of independent variables selected to generate the air temperature models varied 

greatly from other studies.  

Oukawa et al. (2022), temperature was collected in 12 different sites utilizing 

mobile sensors and models were developed through use of RF algorithm. However, in 

contrast to this study, more than 30 independent variables were utilized (not accounting 

for buffer sizes), considering atmospheric vertical indices (e.g., boundary layer height, 

total column water vapor), population and traffic (e.g., population density, road length), 

urban morphology (e.g., mean building height, building volume density, sky view factor), 

and weather data (e.g., relative humidity, wind speed, atmospheric pressure, incoming 

solar irradiation). 
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In Voelkel et al. (2018), the number of independent variables chosen to be part of 

the predictive model covered similar features as this study, accounting for natural features 

(e.g., canopy cover, canopy density), built-up structures (e.g., building height, building 

volume), and a calculated vegetation index (such as NDVI). In contrast, the number of air 

temperature measurements surpassed 50,000 points for a study area that occupies 

approximately 145mi² (US Census Bureau 2021), a considerable difference from the 

larger study area of this study (Des Moines), which consists in approximately 90mi²  

where an average of 10,000 air temperature points were collected per time of collection.  

In Shandas et al. (2019), a study that used mobile temperature sensors to collect 

air temperature and similar number of independent variables to derive predictive models 

utilizing RF, collected an average (total number of collected points divided by each run) 

of 34,657, 24,682, and 26,435 air temperature measurements in areas of 59.93mi² 

(Richmond, VA), 80.95mi² (Baltimore, MD), and 61.13mi² (Washington, D.C.), 

respectively (US Census Bureau 2021). The hypothesis based on previous and the current 

study is that both the amount of air temperature collected per study area does play a role 

as well as the number of variables utilized as independent variables during the modeling 

phase, but extra efforts in collecting a larger sample seem to be unnecessary when 

comparing this study to the ones conducted by Voelkel et al. (2018) and Shandas et al. 

(2019). Specifically, considering just the number of air temperature measurements 

collected in this study, cities with fewer (-50%) measurements (e.g., Fort Dodge, 

Marshalltown, and Sioux City) showed minimal to no impact on the predictive models.  
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This could imply that shorter temperature collection times might yield comparable 

predictability for new models, leading to improved efficiency and the feasibility of 

executing data collection over shorter periods due to logistical and financial constraints. 

Surprisingly, the consistency of specific independent variables as the most 

important, or explaining the most variation in the models (e.g., NDVI), in predicting 

temperature across different study areas showed that, in theory, even fewer independent 

variables could have been utilized. NDVI not only appears as the most important 

variable, it also appears as the most reoccurring important variable for the second, fourth, 

and fifth most important variable across all 24 models. In comparison to the study 

conducted by Voelkel and Shandas (2017), the most important variable for the three 

models provided (morning, afternoon, and evening), was building height, while in studies 

such as Oukawa et al. (2022) and Shandas et al. (2019) found the most important 

variables in explaining the modeled temperature were relative humidity and NDVI.  

Regarding the five neighbor distances employed in this reserach, 800 meters is the 

one appeared the most frequently as the first most important variable (54.1%), second 

most important variable (54.1%), fourth most important variable (62.5%), and fifth most 

important variable (54.1%). Out of all neighbor distances, 50 meters had the least 

common appearance as the most important variable, regardless of the position (1st, 2nd, 

3rd, 4th, or 5th most important variable), with only 4 appearances, followed by 100 meters 

with 10 appearances, 200 meters with 19 appearances, 400 meters with 24 appearances, 

and 800 meters with 63 appearances. These results are somewhat similar to the ones 

found in Voelkel and Shandas (2017) in which neighborhood distances between 800 and 
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1000 were most commonly shown to be important overall (53.3% of all 5 most important 

variables of all models) and especially for morning and evening data collections.  

For this study, to address the third objective (“To examine the temperature 

variation across urban neighborhoods with varying socio-demographic characteristics”), a 

different approach was used to carry out statistical analyses. In contrast to the second 

objective, where air temperature was treated as a dependent variable, the focus shifted to 

explore how air temperature varies regarding income and non-white population. For this 

purpose, income and non-white population were held constant, treating air temperature as 

the independent variable. For the results, interestingly and somewhat in contradiction to a 

number of studies (e.g., Shandas 2009, Hattis et al. 2012) that seek to understand how 

different demographics are affected by urban heat, in specific low-income 

neighborhoods, this study found that, even for statistically significant results, there was 

only low to moderate negative correlations between income and air temperature for the 

selected urban areas. Regarding the correlation between ethnical minorities and modeled 

air temperatures, cities such as Cedar Falls, Sioux City, and Waterloo presented evidence 

that racial minorities do tend to experience more heat than white populations in the urban 

areas. While the findings may not exhibit the same level of severity observed in other 

studies, the disparity in heat exposure among minority groups is a matter of concern that 

deserves heightened attention from local and state government. 

 

Conclusions 

The primary goal of this research was to monitor and model urban heat patterns in 

the state of Iowa by using a high temporal resolution mobile sensor and high spatial 



129 
 

resolution geospatial data. Air temperature data were collected by mobile sensors in 10 

urban areas and during multiple times of the day (afternoon, evening, and night), each for 

a period of approximately one hour, mainly during the summer of 2022. These data were 

leveraged by a machine learning algorithm (RF) to model urban temperature patterns in 

those 10 cities at different times while using highly detailed derived geospatial data on 

urban morphology (e.g., buildings) and greenness.  

The use of the RF algorithm in predicting temperature across all urban areas 

resulted in significant R² coefficients, where 83% of the models exhibited values higher 

than 0.95, and 62.5% showed values over 0.97, all being statistically significant (p-value 

<0.01). This indicates that the approach of creating detailed geospatial temperature 

patterns by incorporating a diverse range of morphometric and natural features as 

independent variables (Canopy Cover, Canopy Density Metric, Building Height, Building 

Volume, and Normalized Difference Vegetation Index) in the urban environment proved 

to be effective. The highly statistically significant predictive power of the multiple 

developed models also offered valuable insights on the impacts that man-made and 

natural features (the foundation to derive most independent variables) have in 

contributing or preventing urban heat across the state of Iowa. These models also 

revealed that independent variables exert a stronger statistical influence when considering 

larger neighbor distances compared to small areas. Additionally, forest-based algorithms 

proved to be effective in this context, and the study highlighted how urban heat 

disproportionately affects different neighborhoods with varying sociodemographic 

characteristics. 
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As this research was conducted for a project (Iowa Economic Development 

Authority, Iowa Energy Center Grant Program, Agreement Number: 21-IEC-012) that has 

the purpose to ensure its replicability and produce beneficial socioeconomic outcomes for 

the communities in all urban areas where data was gathered, including every city in the 

state of Iowa, the measured data, modeled temperature data, and other resources from the 

study will be made publicly available to aid in their effective use moving forward. Urban 

planners, landscape architects, zoning specialists, and public health experts are just a few 

of the professionals that can potentially make use of the content provided in this thesis to 

develop ways of mitigating urban heat (e.g., by implementing highly vegetated areas) and 

establishing or improving environmentally equitable housing to prevent and respond to 

heat-related health issues. Moreover, continuous investment in understanding urban heat 

patterns will certainly allow for preventive measures to be taken at different scales, as 

well as mitigative actions that can develop novel techniques, significantly enhancing the 

overall quality of life for both individuals and the community as a whole. Ultimately, 

throughout collecting air temperature data in a variety of urban settings and by analyzing 

the differences in temperature across spatially distinct areas, all urban areas in this study 

experience urban heat regardless of their size and landscape features. 

 

Limitations  

Various limitations were encountered during the course of this research, and they 

can be categorized according to the three specific objectives of the study. The first 

objective, which pertains to the collection of air temperature data, presented limitations 

regarding the ability to characterize and utilize data on weather variation during the time 
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of collection, for example, winds coming from different directions, humidity, cloudiness, 

and the angle at which the sun rays are directed and can be reflected by different 

morphometric features in the urban environment. While the author acknowledges that 

these limitations can exert a significant influence on urban temperatures, they fall outside 

the scope of this research. Unexpected circumstances such as malfunctioning devices, 

and heavy traffic during the time of collection were seen on a few occasions. Those 

situations have the potential to delay data collection, prevent the methods to be accurately 

applied in a consistent manner throughout different study areas, or postpone data 

acquisition, directly influencing the current planned routes or future collections. In 

situations where temperature variability is below 2 degrees Celsius throughout the whole 

route can also be a challenging situation. All mobile devices used during this research had 

an air temperature reading accuracy of 0.2°C, resulting in a potential variance of 0.4°C (-

0.2°C to +0.2°C). For night temperature collection, which usually presented the lowest 

temperature variances during this study (e.g., Marshalltown/Night, Waterloo-Cedar 

Falls/Night), a margin of error of 0.4°C can represent a considerable amount of variance 

that might not be correctly explained by the different features encountered in the urban 

environment throughout the collection. 

Even though the goal of this study was to collect air temperature data during hot 

days in different study areas, temperature patterns for urban areas during cold days are 

seldom explored by existent literature. While extensive research has been conducted on 

temperature patterns in urban environments, the focus has predominantly been on urban 

heat during extremely hot weather conditions. The lack of research in areas where 
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temperatures frequently drop to sub-zero temperatures during winter warrants the need 

for additional studies. 

Objective two, which focused on modeling and predicting temperature patterns 

across the whole urban area, has the potential to be affected by different factors, 

including the routes executed during the data collection phase not representing the true 

diversity of features found in the urban area; availability of high-resolution LiDAR, high-

resolution satellite imagery, and accurate building footprints; and the possibility of 

unanticipated errors that might happen during the data processing phase, such as banding 

on a few raster files as it was experienced during this study. Furthermore, the 

performance of predictive models based on temperature collected at different timeframes 

or during longer or shorter routes remains uncertain, as the collection of air temperature 

utilizing different methods within the selected urban areas has not been conducted. 

Objective three poses different challenges regarding data reliability and/or the 

lack of specific information that might be useful for accurate socioeconomic analyses. 

Reported income might not always best represent the income condition of a household, 

nor does it provide the information on how many people contribute to the published 

income for the unit, which can affect the statistics of a larger demographic area (e.g., 

census blocks, block groups, census tracts, etc.). Even though the chosen geographic area 

provided an acceptable framework for the comparison between air temperature and 

income/ethnicity, a more comprehensive study considering a smaller geographic unit 

(census blocks) could provide a better representation of how specific demographic groups 

experience heat in the urban environment, which would be supported by the high-

resolution sensors and geospatial data utilized during this study. In addition, according to 
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the literature (Shandas 2009, Voelkel et al. 2018, Alizadeh et al. 2022), it was expected 

that minority groups would be consistently shown as disproportionally affected by urban 

heat throughout most if not all study areas, which was not the case for most cities in this 

study. Innumerable factors could have contributed to the results, such as areas having a 

higher land value than their counterparts; gentrification; the existence of groups classified 

as bi- or multiracial; and also possibly due to the history of urban development in Iowa 

being different from some of the large metropolitan areas examined in other studies. 

 

Future Directions 

Even though the author believes this study accomplished its goal and objectives, 

further research would be beneficial to the understanding and modeling urban heat 

patterns in single or multi-study areas. Considering the high R² obtained from the 

temperature models in this study, the question of what is the minimum number of 

temperature points collected throughout the urban area that would give similar results is 

still a question to be answered. Besides, the number of variables and neighbor distances 

necessary to create accurate and reliable temperature models can potentially inspire new 

research using similar methods and geospatial data, extrapolating models to even larger 

areas outside of the urban environment (e.g.,>1,500 meters) , considering different 

variables that can portray the heterogeneity of the urban fabric (e.g., SVF, humidity, 

proportion of impervious surfaces, albedo of built-up structures), or reducing to a fewer 

number of variables that presented higher statistic influence in the air temperature models 

(e.g., NDVI at certain neighbor distances). Finally, other socioeconomic variables that go 

beyond income and ethnicity could be used to identify groups that can also be 
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disproportionally affected by heat, such as elderly population or immigrants, given that 

limitations in finding housing can be posed as a bigger challenge to these demographics 

in the urban environment. 
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Appendix A 

Income Linear Regression (TIBCO Spotfire S+ v. 8.2.0) 

 

*** Linear Model *** 
 
Call: lm(formula = BAFI ~ BAF, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median   3Q   Max  
 -32206 -10688  -2926 6767 55877 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  732829.2204  300194.8746       2.4412       0.0200 
        BAF  -20370.1718    9000.9955      -2.2631       0.0301 
 
Residual standard error: 18240 on 34 degrees of freedom 
Multiple R-Squared: 0.1309      Adjusted R-squared: 0.1054  
F-statistic: 5.122 on 1 and 34 degrees of freedom, the p-value is 0.03013  
172 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = BEI ~ BE, data = Income, na.action = na.exclude) 
Residuals: 
    Min    1Q Median   3Q   Max  
 -33433 -8370  -2352 5436 52302 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  757361.6528  262772.8057       2.8822       0.0068 
         BE  -23665.4874    8834.3839      -2.6788       0.0113 
 
Residual standard error: 17780 on 34 degrees of freedom 
Multiple R-Squared: 0.1743      Adjusted R-squared: 0.15  
F-statistic: 7.176 on 1 and 34 degrees of freedom, the p-value is 0.0113  
172 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = BNI ~ BN, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median   3Q   Max  
 -34897 -10942  -3213 7154 55396 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  637497.6859  296682.5132       2.1488       0.0389 
         BN  -21795.5402   11071.8262      -1.9686       0.0572 
 
Residual standard error: 18530 on 34 degrees of freedom 
Multiple R-Squared: 0.1023      Adjusted R-squared: 0.07591  
F-statistic: 3.875 on 1 and 34 degrees of freedom, the p-value is 0.0572  
172 observations deleted due to missing values  
 
 
 *** Linear Model *** 
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Call: lm(formula = CBAI ~ CBA, data = Income, na.action = na.exclude) 
Residuals: 
    Min    1Q Median    3Q   Max  
 -39479 -9158  390.9 11580 39563 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  392285.9124  116433.0931       3.3692       0.0013 
        CBA  -11342.1140    3958.3842      -2.8653       0.0057 
 
Residual standard error: 17430 on 60 degrees of freedom 
Multiple R-Squared: 0.1204      Adjusted R-squared: 0.1057  
F-statistic: 8.21 on 1 and 60 degrees of freedom, the p-value is 0.005735  
146 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CBEI ~ CBE, data = Income, na.action = na.exclude) 
Residuals: 
    Min    1Q Median    3Q   Max  
 -38726 -9914  398.2 11512 36052 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  401321.1964   95135.0396       4.2184       0.0001 
        CBE  -13930.2334    3867.2972      -3.6021       0.0006 
 
Residual standard error: 16860 on 60 degrees of freedom 
Multiple R-Squared: 0.1778      Adjusted R-squared: 0.1641  
F-statistic: 12.97 on 1 and 60 degrees of freedom, the p-value is 0.0006419  
146 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CBNI ~ CBN, data = Income, na.action = na.exclude) 
Residuals: 
    Min    1Q Median    3Q   Max  
 -39075 -7846 -139.9 11053 35450 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  342474.6541   70918.7652       4.8291       0.0000 
        CBN  -14202.7910    3548.2231      -4.0028       0.0002 
 
Residual standard error: 16510 on 60 degrees of freedom 
Multiple R-Squared: 0.2108      Adjusted R-squared: 0.1976  
F-statistic: 16.02 on 1 and 60 degrees of freedom, the p-value is 0.0001747  
146 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CRAI ~ CRA, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q    Max  
 -54253 -18603  -3272 13192 111841 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  1738678.3763   449142.2536        3.8711        0.0002 
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        CRA   -49170.3314    13205.9493       -3.7233        0.0003 
 
Residual standard error: 28760 on 91 degrees of freedom 
Multiple R-Squared: 0.1322      Adjusted R-squared: 0.1227  
F-statistic: 13.86 on 1 and 91 degrees of freedom, the p-value is 0.0003404  
115 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CREI ~ CRE, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q    Max  
 -54266 -19193  -4982 10158 115692 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  885837.2080  308819.3505       2.8685       0.0051 
        CRE  -29311.3344   11045.9795      -2.6536       0.0094 
 
Residual standard error: 29740 on 91 degrees of freedom 
Multiple R-Squared: 0.07182      Adjusted R-squared: 0.06162  
F-statistic: 7.041 on 1 and 91 degrees of freedom, the p-value is 0.009399  
115 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CRNI ~ CRN, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q    Max  
 -48159 -17493  -4834 10027 122208 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  747232.1978  191833.9690       3.8952       0.0002 
        CRN  -28453.9316    8016.3444      -3.5495       0.0006 
 
Residual standard error: 28930 on 91 degrees of freedom 
Multiple R-Squared: 0.1216      Adjusted R-squared: 0.112  
F-statistic: 12.6 on 1 and 91 degrees of freedom, the p-value is 0.0006131  
115 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = DMAI ~ DMA, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q    Max  
 -46779 -16855  -2000 11828 151198 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  1696067.7428   226949.2037        7.4733        0.0000 
        DMA   -43865.4744     6097.1514       -7.1944        0.0000 
 
Residual standard error: 23480 on 206 degrees of freedom 
Multiple R-Squared: 0.2008      Adjusted R-squared: 0.1969  
F-statistic: 51.76 on 1 and 206 degrees of freedom, the p-value is 1.144e-011  
 
 
 *** Linear Model *** 
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Call: lm(formula = DMEI ~ DME, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q    Max  
 -49501 -14011  -1960 10272 170684 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  785711.9086  191757.4984       4.0974       0.0001 
        DME  -22964.4368    6095.7895      -3.7673       0.0002 
 
Residual standard error: 25410 on 206 degrees of freedom 
Multiple R-Squared: 0.06445      Adjusted R-squared: 0.05991  
F-statistic: 14.19 on 1 and 206 degrees of freedom, the p-value is 0.0002154  
 
 
 *** Linear Model *** 
 
Call: lm(formula = DMNI ~ DMN, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q    Max  
 -50994 -15191  -1938 10583 168339 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  1148711.8075   216784.7546        5.2989        0.0000 
        DMN   -38153.4402     7620.2793       -5.0068        0.0000 
 
Residual standard error: 24800 on 206 degrees of freedom 
Multiple R-Squared: 0.1085      Adjusted R-squared: 0.1042  
F-statistic: 25.07 on 1 and 206 degrees of freedom, the p-value is 1.186e-006  
 
 
 *** Linear Model *** 
 
Call: lm(formula = FDAI ~ FDA, data = Income, na.action = na.exclude) 
Residuals: 
    Min    1Q Median   3Q   Max  
 -35913 -7388  -3266 7720 44489 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  480739.0598  332485.8688       1.4459       0.1617 
        FDA  -13291.2975   10352.1844      -1.2839       0.2120 
 
Residual standard error: 19460 on 23 degrees of freedom 
Multiple R-Squared: 0.06688      Adjusted R-squared: 0.02631  
F-statistic: 1.648 on 1 and 23 degrees of freedom, the p-value is 0.212  
183 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = FDEI ~ FDE, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q   Max  
 -30693 -14158  -2684 10291 44614 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  253149.2548  109571.7566       2.3104       0.0302 
        FDE   -8008.6553    4401.2218      -1.8196       0.0819 
 
Residual standard error: 18840 on 23 degrees of freedom 
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Multiple R-Squared: 0.1258      Adjusted R-squared: 0.08784  
F-statistic: 3.311 on 1 and 23 degrees of freedom, the p-value is 0.08186  
183 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = MAI ~ MA, data = Income, na.action = na.exclude) 
Residuals: 
    Min    1Q Median   3Q   Max  
 -29871 -8241  -2888 5970 42401 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  857839.7570  214747.4286       3.9946       0.0005 
         MA  -22984.1114    6211.9962      -3.7000       0.0011 
 
Residual standard error: 16910 on 25 degrees of freedom 
Multiple R-Squared: 0.3538      Adjusted R-squared: 0.328  
F-statistic: 13.69 on 1 and 25 degrees of freedom, the p-value is 0.001066  
181 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = MNI ~ MN, data = Income, na.action = na.exclude) 
Residuals: 
    Min    1Q Median   3Q   Max  
 -27555 -8813  -4332 6650 44546 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  1655218.1722   448038.9163        3.6944        0.0011 
         MN   -72702.2765    20462.1697       -3.5530        0.0015 
 
Residual standard error: 17140 on 25 degrees of freedom 
Multiple R-Squared: 0.3355      Adjusted R-squared: 0.3089  
F-statistic: 12.62 on 1 and 25 degrees of freedom, the p-value is 0.001545  
181 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = SCAI ~ SCA, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q    Max  
 -51101 -21126  -5191 16454 105283 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  1852808.6991   638681.3630        2.9010        0.0049 
        SCA   -53220.8785    19011.7747       -2.7994        0.0065 
 
Residual standard error: 28610 on 74 degrees of freedom 
Multiple R-Squared: 0.09576      Adjusted R-squared: 0.08354  
F-statistic: 7.836 on 1 and 74 degrees of freedom, the p-value is 0.006526  
132 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = SCEI ~ SCE, data = Income, na.action = na.exclude) 
Residuals: 
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    Min     1Q Median    3Q    Max  
 -44330 -19038  -5135 14137 108611 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  1106766.4223   350608.5724        3.1567        0.0023 
        SCE   -36332.0789    12226.2907       -2.9716        0.0040 
 
Residual standard error: 28440 on 74 degrees of freedom 
Multiple R-Squared: 0.1066      Adjusted R-squared: 0.09454  
F-statistic: 8.831 on 1 and 74 degrees of freedom, the p-value is 0.003994  
132 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = SCNI ~ SCN, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q    Max  
 -48665 -19847  -5491 15037 110547 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  370453.3222  143518.8222       2.5812       0.0118 
        SCN  -12785.3432    6004.2596      -2.1294       0.0365 
 
Residual standard error: 29210 on 74 degrees of freedom 
Multiple R-Squared: 0.05774      Adjusted R-squared: 0.045  
F-statistic: 4.534 on 1 and 74 degrees of freedom, the p-value is 0.03655  
132 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WCAI ~ WCA, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q   Max  
 -40138 -15405  -2686 11294 67760 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  1519608.0906   330529.8137        4.5975        0.0000 
        WCA   -42149.6499     9537.4292       -4.4194        0.0000 
 
Residual standard error: 24080 on 67 degrees of freedom 
Multiple R-Squared: 0.2257      Adjusted R-squared: 0.2142  
F-statistic: 19.53 on 1 and 67 degrees of freedom, the p-value is 0.00003709  
139 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WCEI ~ WCE, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q   Max  
 -43753 -12716  -3475 11729 68842 
 
Coefficients: 
                   Value   Std. Error      t value     Pr(>|t|)  
(Intercept)  799880.2160  136732.9853       5.8499       0.0000 
        WCE  -28218.7518    5206.3141      -5.4201       0.0000 
 
Residual standard error: 22810 on 67 degrees of freedom 



153 
 
Multiple R-Squared: 0.3048      Adjusted R-squared: 0.2944  
F-statistic: 29.38 on 1 and 67 degrees of freedom, the p-value is 8.754e-007  
139 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WCNI ~ WCN, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q   Max  
 -39101 -16907  -1762 13601 71944 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  3513161.0345   661499.1395        5.3109        0.0000 
        WCN  -152507.3410    29205.4532       -5.2219        0.0000 
 
Residual standard error: 23070 on 67 degrees of freedom 
Multiple R-Squared: 0.2893      Adjusted R-squared: 0.2787  
F-statistic: 27.27 on 1 and 67 degrees of freedom, the p-value is 1.882e-006  
139 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WAI ~ WA, data = Income, na.action = na.exclude) 
Residuals: 
    Min    1Q Median    3Q   Max  
 -47248 -4543   4350 10605 16715 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)  1329673.7907  1106529.1673        1.2017        0.2639 
         WA   -35284.2350    31021.7907       -1.1374        0.2883 
 
Residual standard error: 19660 on 8 degrees of freedom 
Multiple R-Squared: 0.1392      Adjusted R-squared: 0.0316  
F-statistic: 1.294 on 1 and 8 degrees of freedom, the p-value is 0.2883  
198 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WEI ~ WE, data = Income, na.action = na.exclude) 
Residuals: 
    Min     1Q Median    3Q   Max  
 -42472 -10683   7921 14019 18489 
 
Coefficients: 
                    Value    Std. Error       t value      Pr(>|t|)  
(Intercept)   119788.2341  1377595.9761        0.0870        0.9328 
         WE    -1635.0884    46287.3528       -0.0353        0.9727 
 
Residual standard error: 21190 on 8 degrees of freedom 
Multiple R-Squared: 0.000156      Adjusted R-squared: -0.1248  
F-statistic: 0.001248 on 1 and 8 degrees of freedom, the p-value is 0.9727  
198 observations deleted due to missing values  
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Ethnicity Linear Regression (TIBCO Spotfire S+ v. 8.2.0) 

 

*** Linear Model *** 
 
Call: lm(formula = BAFR ~ BAF, data = Race, na.action = na.exclude) 
Residuals: 
     Min       1Q  Median      3Q   Max  
 -0.1604 -0.08714 -0.0328 0.04062 0.606 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -2.3880  2.1983    -1.0863  0.2844  
        BAF  0.0745  0.0659     1.1308  0.2654  
 
Residual standard error: 0.1343 on 37 degrees of freedom 
Multiple R-Squared: 0.0334      Adjusted R-squared: 0.007278  
F-statistic: 1.279 on 1 and 37 degrees of freedom, the p-value is 0.2654  
177 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = BER ~ BE, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median      3Q    Max  
 -0.1556 -0.0845 -0.02255 0.04294 0.6024 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -2.1095  1.9590    -1.0769  0.2885  
         BE  0.0742  0.0658     1.1268  0.2671  
 
Residual standard error: 0.1343 on 37 degrees of freedom 
Multiple R-Squared: 0.03317      Adjusted R-squared: 0.007044  
F-statistic: 1.27 on 1 and 37 degrees of freedom, the p-value is 0.2671  
177 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = BNR ~ BN, data = Race, na.action = na.exclude) 
Residuals: 
     Min       1Q   Median      3Q    Max  
 -0.1361 -0.08592 -0.03874 0.03269 0.6156 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -1.4049  2.1428    -0.6556  0.5161  
         BN  0.0561  0.0800     0.7012  0.4875  
 
Residual standard error: 0.1357 on 37 degrees of freedom 
Multiple R-Squared: 0.01312      Adjusted R-squared: -0.01356  
F-statistic: 0.4917 on 1 and 37 degrees of freedom, the p-value is 0.4875  
177 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CBAR ~ CBA, data = Race, na.action = na.exclude) 
Residuals: 
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      Min       1Q   Median      3Q    Max  
 -0.07045 -0.04977 -0.02851 0.02689 0.3186 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -0.4248  0.5022    -0.8459  0.4007  
        CBA  0.0165  0.0171     0.9672  0.3370  
 
Residual standard error: 0.07613 on 65 degrees of freedom 
Multiple R-Squared: 0.01419      Adjusted R-squared: -0.0009783  
F-statistic: 0.9355 on 1 and 65 degrees of freedom, the p-value is 0.337  
149 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CBER ~ CBE, data = Race, na.action = na.exclude) 
Residuals: 
      Min       1Q   Median      3Q    Max  
 -0.06691 -0.04965 -0.02822 0.03085 0.3222 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -0.3366  0.4236    -0.7947  0.4297  
        CBE  0.0162  0.0172     0.9385  0.3514  
 
Residual standard error: 0.07616 on 65 degrees of freedom 
Multiple R-Squared: 0.01337      Adjusted R-squared: -0.001809  
F-statistic: 0.8808 on 1 and 65 degrees of freedom, the p-value is 0.3514  
149 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CBNR ~ CBN, data = Race, na.action = na.exclude) 
Residuals: 
      Min       1Q   Median      3Q    Max  
 -0.07015 -0.04688 -0.02737 0.03183 0.3214 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -0.2769  0.3192    -0.8675  0.3889  
        CBN  0.0169  0.0160     1.0586  0.2937  
 
Residual standard error: 0.07602 on 65 degrees of freedom 
Multiple R-Squared: 0.01695      Adjusted R-squared: 0.001823  
F-statistic: 1.121 on 1 and 65 degrees of freedom, the p-value is 0.2937  
149 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CRAR ~ CRA, data = Race, na.action = na.exclude) 
Residuals: 
     Min       1Q   Median      3Q    Max  
 -0.1726 -0.09915 -0.01927 0.06024 0.4415 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -5.7367  1.8780    -3.0546  0.0029  
        CRA  0.1725  0.0552     3.1239  0.0024  
 
Residual standard error: 0.1234 on 95 degrees of freedom 
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Multiple R-Squared: 0.09316      Adjusted R-squared: 0.08361  
F-statistic: 9.759 on 1 and 95 degrees of freedom, the p-value is 0.002366  
119 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CRER ~ CRE, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median      3Q    Max  
 -0.1547 -0.0872 -0.03477 0.05755 0.4919 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -3.4065  1.2806    -2.6601  0.0092  
        CRE  0.1265  0.0458     2.7617  0.0069  
 
Residual standard error: 0.1247 on 95 degrees of freedom 
Multiple R-Squared: 0.07432      Adjusted R-squared: 0.06457  
F-statistic: 7.627 on 1 and 95 degrees of freedom, the p-value is 0.006903  
119 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = CRNR ~ CRN, data = Race, na.action = na.exclude) 
Residuals: 
     Min       1Q   Median      3Q    Max  
 -0.1771 -0.08705 -0.04074 0.06407 0.4608 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -2.2048  0.8015    -2.7508  0.0071  
        CRN  0.0976  0.0335     2.9133  0.0045  
 
Residual standard error: 0.1242 on 95 degrees of freedom 
Multiple R-Squared: 0.08201      Adjusted R-squared: 0.07235  
F-statistic: 8.487 on 1 and 95 degrees of freedom, the p-value is 0.004458  
119 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = DMAR ~ DMA, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median      3Q    Max  
 -0.2551 -0.1269 -0.03072 0.07399 0.6058 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -7.0340  1.6619    -4.2325  0.0000  
        DMA  0.1945  0.0446     4.3568  0.0000  
 
Residual standard error: 0.1758 on 213 degrees of freedom 
Multiple R-Squared: 0.08183      Adjusted R-squared: 0.07751  
F-statistic: 18.98 on 1 and 213 degrees of freedom, the p-value is 0.00002051  
1 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = DMER ~ DME, data = Race, na.action = na.exclude) 
Residuals: 
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     Min      1Q   Median      3Q    Max  
 -0.2439 -0.1339 -0.03834 0.08423 0.5904 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -4.6948  1.3296    -3.5311  0.0005  
        DME  0.1558  0.0423     3.6865  0.0003  
 
Residual standard error: 0.1778 on 213 degrees of freedom 
Multiple R-Squared: 0.05998      Adjusted R-squared: 0.05557  
F-statistic: 13.59 on 1 and 213 degrees of freedom, the p-value is 0.0002885  
1 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = DMNR ~ DMN, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q  Median      3Q    Max  
 -0.2576 -0.1283 -0.0319 0.07023 0.6083 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -5.7538  1.5194    -3.7868  0.0002  
        DMN  0.2095  0.0534     3.9228  0.0001  
 
Residual standard error: 0.1771 on 213 degrees of freedom 
Multiple R-Squared: 0.06738      Adjusted R-squared: 0.063  
F-statistic: 15.39 on 1 and 213 degrees of freedom, the p-value is 0.0001181  
1 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = FDAR ~ FDA, data = Race, na.action = na.exclude) 
Residuals: 
     Min       1Q   Median     3Q    Max  
 -0.1208 -0.08288 -0.01713 0.0362 0.2709 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -1.5684  1.7321    -0.9055  0.3735  
        FDA  0.0520  0.0539     0.9642  0.3439  
 
Residual standard error: 0.1046 on 26 degrees of freedom 
Multiple R-Squared: 0.03452      Adjusted R-squared: -0.002614  
F-statistic: 0.9296 on 1 and 26 degrees of freedom, the p-value is 0.3439  
188 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = FDER ~ FDE, data = Race, na.action = na.exclude) 
Residuals: 
     Min       1Q   Median      3Q    Max  
 -0.1204 -0.07922 -0.02096 0.04461 0.2322 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -0.5548  0.5535    -1.0024  0.3254  
        FDE  0.0263  0.0222     1.1867  0.2461  
 
Residual standard error: 0.1036 on 26 degrees of freedom 
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Multiple R-Squared: 0.05138      Adjusted R-squared: 0.01489  
F-statistic: 1.408 on 1 and 26 degrees of freedom, the p-value is 0.2461  
188 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = MAR ~ MA, data = Race, na.action = na.exclude) 
Residuals: 
     Min     1Q    Median      3Q    Max  
 -0.1637 -0.115 -0.009255 0.07814 0.2415 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -0.5306  1.5321    -0.3463  0.7317  
         MA  0.0197  0.0443     0.4441  0.6604  
 
Residual standard error: 0.128 on 28 degrees of freedom 
Multiple R-Squared: 0.006993      Adjusted R-squared: -0.02847  
F-statistic: 0.1972 on 1 and 28 degrees of freedom, the p-value is 0.6604  
186 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = MNR ~ MN, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median      3Q    Max  
 -0.1574 -0.1151 -0.01072 0.06717 0.2435 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -0.5057  3.1483    -0.1606  0.8735  
         MN  0.0299  0.1437     0.2082  0.8366  
 
Residual standard error: 0.1283 on 28 degrees of freedom 
Multiple R-Squared: 0.001545      Adjusted R-squared: -0.03411  
F-statistic: 0.04334 on 1 and 28 degrees of freedom, the p-value is 0.8366  
186 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = SCAR ~ SCA, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median     3Q    Max  
 -0.2058 -0.1238 -0.03391 0.1067 0.3967 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -7.3079  3.2915    -2.2202  0.0293  
        SCA  0.2223  0.0980     2.2692  0.0260  
 
Residual standard error: 0.1532 on 79 degrees of freedom 
Multiple R-Squared: 0.06119      Adjusted R-squared: 0.04931  
F-statistic: 5.149 on 1 and 79 degrees of freedom, the p-value is 0.02598  
135 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = SCER ~ SCE, data = Race, na.action = na.exclude) 
Residuals: 
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     Min      1Q   Median      3Q    Max  
 -0.2805 -0.0986 -0.01958 0.09189 0.4068 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -7.4429  1.7355    -4.2886  0.0001  
        SCE  0.2652  0.0605     4.3818  0.0000  
 
Residual standard error: 0.1419 on 79 degrees of freedom 
Multiple R-Squared: 0.1955      Adjusted R-squared: 0.1853  
F-statistic: 19.2 on 1 and 79 degrees of freedom, the p-value is 0.00003583  
135 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = SCNR ~ SCN, data = Race, na.action = na.exclude) 
Residuals: 
     Min       1Q Median      3Q    Max  
 -0.3195 -0.09225 -0.027 0.08503 0.4096 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -2.7894  0.6989    -3.9910  0.0001  
        SCN  0.1235  0.0292     4.2229  0.0001  
 
Residual standard error: 0.1429 on 79 degrees of freedom 
Multiple R-Squared: 0.1842      Adjusted R-squared: 0.1738  
F-statistic: 17.83 on 1 and 79 degrees of freedom, the p-value is 0.00006403  
135 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WCAR ~ WCA, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median      3Q    Max  
 -0.2767 -0.1132 -0.07278 0.06988 0.7363 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -6.3233  2.3183    -2.7276  0.0080  
        WCA  0.1872  0.0669     2.7996  0.0066  
 
Residual standard error: 0.181 on 71 degrees of freedom 
Multiple R-Squared: 0.09942      Adjusted R-squared: 0.08673  
F-statistic: 7.838 on 1 and 71 degrees of freedom, the p-value is 0.006585  
143 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WCER ~ WCE, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q  Median     3Q    Max  
 -0.2554 -0.1104 -0.0557 0.0775 0.7193 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -3.6513  1.0138    -3.6015  0.0006  
        WCE  0.1454  0.0386     3.7666  0.0003  
 
Residual standard error: 0.1741 on 71 degrees of freedom 
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Multiple R-Squared: 0.1665      Adjusted R-squared: 0.1548  
F-statistic: 14.19 on 1 and 71 degrees of freedom, the p-value is 0.0003384  
143 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WCNR ~ WCN, data = Race, na.action = na.exclude) 
Residuals: 
     Min      1Q   Median      3Q    Max  
 -0.2257 -0.1178 -0.05425 0.07786 0.7047 
 
Coefficients: 
               Value Std. Error  t value Pr(>|t|)  
(Intercept) -18.5844   4.9262    -3.7726   0.0003 
        WCN   0.8279   0.2175     3.8064   0.0003 
 
Residual standard error: 0.1738 on 71 degrees of freedom 
Multiple R-Squared: 0.1695      Adjusted R-squared: 0.1578  
F-statistic: 14.49 on 1 and 71 degrees of freedom, the p-value is 0.0002962  
143 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WAR ~ WA, data = Race, na.action = na.exclude) 
Residuals: 
      Min       1Q   Median      3Q     Max  
 -0.04432 -0.03313 -0.01003 0.02691 0.06596 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept) -1.5384  2.4344    -0.6319  0.5451  
         WA  0.0442  0.0682     0.6476  0.5354  
 
Residual standard error: 0.04326 on 8 degrees of freedom 
Multiple R-Squared: 0.04982      Adjusted R-squared: -0.06895  
F-statistic: 0.4194 on 1 and 8 degrees of freedom, the p-value is 0.5354  
206 observations deleted due to missing values  
 
 
 *** Linear Model *** 
 
Call: lm(formula = WER ~ WE, data = Race, na.action = na.exclude) 
Residuals: 
      Min       1Q   Median      3Q     Max  
 -0.03828 -0.03495 -0.01124 0.02154 0.07477 
 
Coefficients: 
              Value Std. Error t value Pr(>|t|)  
(Intercept)  0.1018  2.8849     0.0353  0.9727  
         WE -0.0021  0.0969    -0.0221  0.9829  
 
Residual standard error: 0.04438 on 8 degrees of freedom 
Multiple R-Squared: 0.00006078      Adjusted R-squared: -0.1249  
F-statistic: 0.0004862 on 1 and 8 degrees of freedom, the p-value is 0.9829  
206 observations deleted due to missing values 
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Python Code to Predict Air Temperature Raster Surface 

 

“’The code below was created by Clemir Abbeg Coproski on May 2023 and was intended to use 
to generate a geospa�al model of temperature 
2 paterns in urban areas. Temperature data was collected using mobile sensors over 
Summer 2022 by the author and imagery, LiDAR 
3 point cloud data, and building footprints were acquired from USGS, State of Iowa, Iowa 
Geodata, coun�es, ci�es, and public repositories. 
4 The pre-requirements to run all the code below are: LAS dataset must be created and it 
must be in the same directory 
5 of the geodatabase/environment; NDVI raster file must be in the geodatabase; 
temperature vector file must be in the geodatabase, building 
6 footprints must be in the geodatabase, and buffer distance file must be in the 
geodatabase. Please change the name of the directories 
7 and the study area accordingly. 
8 This project was funded by the Iowa Economic Development Authority, Iowa Energy Center 
Grant Program (21-IEC-012). 
9 All Rights Reserved.”’ 
10 
11 import arcpy 
12 from arcpy import env 
13 from arcpy.ia import * 
14 from arcpy.sa import * 
15 
16 env.workspace = r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb" 
17 
18 arcpy.ddd.ClassifyLasOverlap("StudyArea_LAS.lasd", "1 Meters", "DEFAULT", 
"PROCESS_EXTENT", "COMPUTE_STATS", "UPDATE_PYRAMID") 
19 
20 arcpy.ddd.ClassifyLasGround("StudyArea_LAS.lasd", "STANDARD", "RECLASSIFY_GROUND", 
21 None, "COMPUTE_STATS", "DEFAULT", None, "PROCESS_EXTENT", 
22 "UPDATE_PYRAMID") 
23 
24 arcpy.management.MakeLasDatasetLayer('StudyArea_LAS.lasd', 'StudyArea_Ground', '2', 
25 'LAST; FIRST_OF_MANY; LAST_OF_MANY; SINGLE; 1; 2; 
3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15', 
26 'INCLUDE_UNFLAGGED', 'INCLUDE_SYNTHETIC', 
'INCLUDE_KEYPOINT', 'EXCLUDE_WITHHELD', 
'EXCLUDE_OVERLAP') 
27 arcpy.conversion.LasDatasetToRaster("StudyArea_LAS.lasd", 
r"c:\users\abbegcc\documents\arcgis\projects\StudyArea\StudyArea.gdb\StudyArea_DEM", 
28 "ELEVATION", "TRIANGULATION NATURAL_NEIGHBOR 
NO_THINNING","FLOAT", "CELLSIZE", 1, 1) 
29 StudyArea_DEMOk = ExtractByMask("StudyArea_DEM", 
r"D:\IowaEnergyCenter\spa�al\Addi�onaldata.gdb\poly_StudyArea_buffer.shp", "INSIDE") 
30 StudyArea_DEMOk.save("StudyArea_DEMOk") 
31 
32 arcpy.ddd.ClassifyLasNoise("StudyArea_LAS.lasd", "RELATIVE_HEIGHT", "CLASSIFY", 
"NO_WITHHELD", 
33 "COMPUTE_STATS", "StudyArea_DEM", "-2 Meters", None, 10, "8 
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Meters", "8 Meters", 
34 "DEFAULT", "PROCESS_EXTENT", None, "UPDATE_PYRAMID") 
35 
36 arcpy.analysis.Clip(r"D:\IowaEnergyCenter\spa�al\BUILDING 
FOOTPRINTS\StudyArea\StudyArea.shp", 
r"D:\IowaEnergyCenter\spa�al\Addi�onaldata.gdb\poly_StudyArea_buffer", 
"StudyArea_BF_Clip") 
37 
38 arcpy.ddd.ClassifyLasBuilding("StudyArea_LAS.lasd", "2 Meters", "6 SquareMeters", 
"COMPUTE_STATS", "DEFAULT", 
39 None, "PROCESS_EXTENT", None, "RECLASSIFY_BUILDING", 
"NOT_PHOTOGRAMMETRIC_DATA", 
40 "AGGRESSIVE", "NO_CLASSIFY_ABOVE_ROOF", "1.5 Meters", 6, 
"CLASSIFY_BELOW_ROOF", 99, 
41 "UPDATE_PYRAMID") 
42 
43 arcpy.ddd.LasBuildingMul�patch("StudyArea_LAS.lasd", "StudyArea_BF_Clip", 
"StudyArea_DEMOk", 
44 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\St 
udyArea.gdb\StudyArea_3DBuildings", 
45 "BUILDING_CLASSIFIED_POINTS", "0.5 Meters", None) 
46 
47 arcpy.ddd.AddZInforma�on("StudyArea_3DBuildings", 
"Z_MIN;Z_MAX;Z_MEAN;SURFACE_AREA;VOLUME;MIN_SLOPE;MAX_SLOPE;AVG_SLOPE", "0.001") 
48 
49 arcpy.ddd.ClassifyLasByHeight("StudyArea_LAS.lasd", "GROUND", "3 5;4 25;5 50", 
50 "NONE", "COMPUTE_STATS", "DEFAULT", "PROCESS_EXTENT", None, 
"UPDATE_PYRAMID") 
51 
52 arcpy.management.MakeLasDatasetLayer('StudyArea_LAS.lasd', 'StudyArea_Surface', "2; 3; 
4; 5; 6; 9; 10; 11; 13; 14; 15; 16; 17", 
53 'FIRST_OF_MANY; 1', 
54 'INCLUDE_UNFLAGGED', 'INCLUDE_SYNTHETIC', 
'INCLUDE_KEYPOINT', 'EXCLUDE_WITHHELD', 
'EXCLUDE_OVERLAP') 
55 
56 arcpy.conversion.LasDatasetToRaster("StudyArea_Surface", 
r"c:\Users\abbegcc\documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_dsm", 
57 "ELEVATION", None, "FLOAT", "CELLSIZE", 1, 1) 
58 
59 StudyArea_DSMOk = ExtractByMask("StudyArea_dsm", 
r"D:\IowaEnergyCenter\spa�al\Addi�onaldata.gdb\poly_StudyArea_buffer.shp", "INSIDE") 
60 StudyArea_DSMOk.save("StudyArea_DSMOk") 
61 
62 StudyArea_nDSM = arcpy.ia.Minus("StudyArea_DSMOk", "StudyArea_DEMOk"); 
63 StudyArea_nDSM.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_nDSM") 
64 
65 arcpy.management.MakeLasDatasetLayer("StudyArea_LAS.lasd", 'StudyArea_GroundClass', '2') 
66 
67 arcpy.management.LasPointStatsAsRaster("StudyArea_GroundClass", "StudyArea_BEDensity", 
68 "POINT_COUNT", "CELLSIZE", "1") 
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69 
70 StudyArea_BE_IsNull = arcpy.sa.IsNull("StudyArea_BEDensity"); 
71 StudyArea_BE_IsNull.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_BE_IsNull" 
) 
72 
73 StudyArea_BE_OK = arcpy.sa.Con("StudyArea_BE_IsNull", 0, "StudyArea_BEDensity", ''); 
74 StudyArea_BE_OK.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_BE_OK") 
75 
76 arcpy.management.MakeLasDatasetLayer("StudyArea_LAS.lasd", 'StudyArea_VegClass', '3; 4; 
5') 
77 
78 arcpy.management.LasPointStatsAsRaster("StudyArea_VegClass", "StudyArea_AGDensity", 
79 "POINT_COUNT", "CELLSIZE", "1") 
80 
81 StudyArea_AG_IsNull = arcpy.sa.IsNull("StudyArea_AGDensity"); 
82 StudyArea_AG_IsNull.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_AG_IsNull" 
) 
83 
84 StudyArea_AG_OK = arcpy.sa.Con("StudyArea_AG_IsNull", 0, "StudyArea_AGDensity", ''); 
85 StudyArea_AG_OK.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_AG_OK") 
86 
87 StudyArea_Density_Composite = arcpy.sa.Plus("StudyArea_AG_OK", "StudyArea_BE_OK"); 
88 StudyArea_Density_Composite.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_Density_Co 
mposite") 
89 
90 StudyArea_Density_Float = arcpy.sa.Float("StudyArea_Density_Composite"); 
91 StudyArea_Density_Float.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_Density_Fl 
oat") 
92 
93 StudyArea_CanopyCover = arcpy.sa.Divide("StudyArea_AG_OK", "StudyArea_Density_Float"); 
94 StudyArea_CanopyCover.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_CanopyCove 
r") 
95 
96 StudyArea_CC = ExtractByMask("StudyArea_CanopyCover", 
r"D:\IowaEnergyCenter\spa�al\Addi�onaldata.gdb\poly_StudyArea_buffer.shp", "INSIDE") 
97 StudyArea_CC.save("StudyArea_CC") 
98 
99 StudyArea_CDM = Times("StudyArea_nDSM", "StudyArea_CC") 
100 StudyArea_CDM.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_CDM") 
101 
102 arcpy.conversion.Mul�patchToRaster("StudyArea_3DBuildings", 
103 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyAre 
a\StudyArea.gdb\StudyArea_Min3d", 1, "MINIMUM_HEIGHT" 
) 
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104 
105 arcpy.conversion.Mul�patchToRaster("StudyArea_3DBuildings", 
106 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyAre 
a\StudyArea.gdb\StudyArea_Max3d", 1, "MAXIMUM_HEIGHT" 
) 
107 
108 arcpy.ddd.Minus("StudyArea_Max3d", "StudyArea_Min3d", 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_Absheight" 
) 
109 
110 StudyArea_Absheight_IsNull = arcpy.ia.IsNull("StudyArea_Absheight"); 
111 StudyArea_Absheight_IsNull.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_Absheight_ 
IsNull") 
112 
113 StudyArea_Absheight_BHeight = arcpy.ia.Con("StudyArea_Absheight_IsNull", 0, 
"StudyArea_Absheight", "Value = 1"); 
114 StudyArea_Absheight_BHeight.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_Absheight_ 
BHeight") 
115 
116 StudyArea_BH = ExtractByMask("StudyArea_Absheight_BHeight", 
r"D:\IowaEnergyCenter\spa�al\Addi�onaldata.gdb\poly_StudyArea_buffer.shp", "INSIDE") 
117 StudyArea_BH.save("StudyArea_BH") 
118 
119 arcpy.ddd.Mul�PatchFootprint("StudyArea_3DBuildings", 
120 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\Stud 
yArea.gdb\StudyArea_Mul�patchVolume", "ORIG_OID") 
121 
122 arcpy.conversion.ExportTable("StudyArea_3DBuildings", 
123 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\Study 
Area.gdb\StudyArea_Volume_Table", 
124 '', "NOT_USE_ALIAS", 'Z_Min "Z_Min" true true false 8 
Double 0 0,First,#,StudyArea_3DBuildings,Z_Min,-1,-1;Z_Max 
"Z_Max" true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,Z_Max,-1,-1;Z_Mean "Z_Mean" 
true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,Z_Mean,-1,-1;SArea "SArea" 
true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,SArea,-1,-1;Volume "Volume" 
true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,Volume,-1,-1;Min_Slope 
"Min_Slope" true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,Min_Slope,-1,-1;Max_Slope 
"Max_Slope" true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,Max_Slope,-1,-1;Avg_Slope 
"Avg_Slope" true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,Avg_Slope,-1,-1;BldgID 
"BldgID" true true false 2 Short 0 
0,First,#,StudyArea_3DBuildings,BldgID,-1,-1;BldgUse 
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"BldgUse" true true false 2 Short 0 
0,First,#,StudyArea_3DBuildings,BldgUse,-1,-1;BldgType 
"BldgType" true true false 25 Text 0 
0,First,#,StudyArea_3DBuildings,BldgType,0,25;BldgFloors 
"BldgFloors" true true false 2 Short 0 
0,First,#,StudyArea_3DBuildings,BldgFloors,-1,-1;BldgHeight 
"BldgHeight" true true false 2 Short 0 
0,First,#,StudyArea_3DBuildings,BldgHeight,-1,-1;BldgName 
"BldgName" true true false 50 Text 0 
0,First,#,StudyArea_3DBuildings,BldgName,0,50;YearBuilt 
"YearBuilt" true true false 2 Short 0 
0,First,#,StudyArea_3DBuildings,YearBuilt,-1,-1;PrimaryAddre 
ss "PrimaryAddress" true true false 50 Text 0 
0,First,#,StudyArea_3DBuildings,PrimaryAddress,0,50;FloodsAt 
"FloodsAt" true true false 2 Short 0 
0,First,#,StudyArea_3DBuildings,FloodsAt,-1,-1;Class 
"Class" true true false 254 Text 0 
0,First,#,StudyArea_3DBuildings,Class,0,254;Confidence 
"Confidence" true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,Confidence,-1,-1;ORIG_OID 
"ORIG_OID" true true false 4 Long 0 
0,First,#,StudyArea_3DBuildings,ORIG_OID,-1,-1;STATUS 
"STATUS" true true false 4 Long 0 
0,First,#,StudyArea_3DBuildings,STATUS,-1,-1;Shape_Leng 
"Shape_Leng" true true false 8 Double 0 
0,First,#,StudyArea_3DBuildings,Shape_Leng,-1,-1;ORIG_OID_1 
"ORIG_OID_1" true true false 4 Long 0 
0,First,#,StudyArea_3DBuildings,ORIG_OID_1,-1,-1', None) 
125 
126 arcpy.management.AddJoin("StudyArea_Mul�patchVolume", 
127 "ORIG_OID", "StudyArea_Volume_Table", "ORIG_OID", "KEEP_ALL", 
"NO_INDEX_JOIN_FIELDS") 
128 
129 arcpy.conversion.ExportFeatures("StudyArea_Mul�patchVolume", 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_BuildingVo 
lume", '', "NOT_USE_ALIAS", 'release "release" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.release,-1,-1;capture_da 
"capture_da" true true false 254 Text 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.capture_da,0,254;ORIG_OID 
"ORIG_OID" true true false 4 Long 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.ORIG_OID,-1,-1;Z_Min 
"Z_Min" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Z_Min,-1,-1;Z_Max 
"Z_Max" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Z_Max,-1,-1;Z_Mean 
"Z_Mean" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Z_Mean,-1,-1;SArea 
"SArea" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.SArea,-1,-1;Min_Slope 
"Min_Slope" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Min_Slope,-1,-1;Max_Slope 
"Max_Slope" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Max_Slope,-1,-1;Avg_Slope 
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"Avg_Slope" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Avg_Slope,-1,-1;Z_Min_1 
"Z_Min_1" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Z_Min_1,-1,-1;Z_Max_1 
"Z_Max_1" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Z_Max_1,-1,-1;Shape_Lengt 
h "Shape_Length" false true true 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Shape_Length,-1,-1;Shape_ 
Area "Shape_Area" false true true 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Mul�patchVolume.Shape_Area,-1,-1;OBJECTID 
"OBJECTID" false true false 4 Long 0 
9,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.OBJECTID,-1,-1;Z_Min "Z_Min" 
true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Z_Min,-1,-1;Z_Max "Z_Max" 
true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Z_Max,-1,-1;Z_Mean "Z_Mean" 
true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Z_Mean,-1,-1;SArea "SArea" 
true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.SArea,-1,-1;Volume "Volume" 
true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Volume,-1,-1;Min_Slope 
"Min_Slope" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Min_Slope,-1,-1;Max_Slope 
"Max_Slope" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Max_Slope,-1,-1;Avg_Slope 
"Avg_Slope" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Avg_Slope,-1,-1;BldgID 
"BldgID" true true false 2 Short 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.BldgID,-1,-1;BldgUse 
"BldgUse" true true false 2 Short 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.BldgUse,-1,-1;BldgType 
"BldgType" true true false 25 Text 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.BldgType,0,25;BldgFloors 
"BldgFloors" true true false 2 Short 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.BldgFloors,-1,-1;BldgHeight 
"BldgHeight" true true false 2 Short 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.BldgHeight,-1,-1;BldgName 
"BldgName" true true false 50 Text 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.BldgName,0,50;YearBuilt 
"YearBuilt" true true false 2 Short 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.YearBuilt,-1,-1;PrimaryAddres 
s "PrimaryAddress" true true false 50 Text 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.PrimaryAddress,0,50;FloodsAt 
"FloodsAt" true true false 2 Short 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.FloodsAt,-1,-1;Class "Class" 
true true false 254 Text 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Class,0,254;Confidence 
"Confidence" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Confidence,-1,-1;ORIG_OID 
"ORIG_OID" true true false 4 Long 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.ORIG_OID,-1,-1;STATUS 
"STATUS" true true false 4 Long 0 
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0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.STATUS,-1,-1;Shape_Leng 
"Shape_Leng" true true false 8 Double 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.Shape_Leng,-1,-1;ORIG_OID_1 
"ORIG_OID_1" true true false 4 Long 0 
0,First,#,StudyArea_Mul�patchVolume,StudyArea_Volume_Table.ORIG_OID_1,-1,-1', None) 
130 
131 arcpy.conversion.FeatureToRaster("StudyArea_BuildingVolume", 
132 "Volume", "StudyArea_BVolume", 1) 
133 
134 StudyArea_IsNull_Vol = arcpy.ia.IsNull("StudyArea_BVolume"); 
135 StudyArea_IsNull_Vol.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_IsNull_Vol 
") 
136 
137 StudyArea_VolumeOk = arcpy.ia.Con("StudyArea_IsNull_Vol", 0, "StudyArea_BVolume", "Value 
= 1"); 
138 StudyArea_VolumeOk.save( 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\StudyArea_VolumeOk") 
139 
140 StudyArea_BV = ExtractByMask("StudyArea_VolumeOk", 
r"D:\IowaEnergyCenter\spa�al\Addi�onaldata.gdb\poly_StudyArea_buffer.shp", "INSIDE") 
141 StudyArea_BV.save("StudyArea_BV") 
142 
143 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
144 StudyArea_BV_Mean50 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "MEAN", 
"DATA") 
145 StudyArea_BV_Mean50.save("StudyArea_BV_Mean50") 
146 
147 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
148 StudyArea_BV_Mean100 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "MEAN", 
"DATA") 
149 StudyArea_BV_Mean100.save("StudyArea_BV_Mean100") 
150 
151 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
152 StudyArea_BV_Mean200 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "MEAN", 
"DATA") 
153 StudyArea_BV_Mean200.save("StudyArea_BV_Mean200") 
154 
155 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
156 StudyArea_BV_Mean400 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "MEAN", 
"DATA") 
157 StudyArea_BV_Mean400.save("StudyArea_BV_Mean400") 
158 
159 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
160 StudyArea_BV_Mean800 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "MEAN", 
"DATA") 
161 StudyArea_BV_Mean800.save("StudyArea_BV_Mean800") 
162 
163 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
164 StudyArea_BV_STD50 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "STD", "DATA" 
) 
165 StudyArea_BV_STD50.save("StudyArea_BV_STD50") 
166 
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167 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
168 StudyArea_BV_STD100 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "STD", 
"DATA") 
169 StudyArea_BV_STD100.save("StudyArea_BV_STD100") 
170 
171 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
172 StudyArea_BV_STD200 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "STD", 
"DATA") 
173 StudyArea_BV_STD200.save("StudyArea_BV_STD200") 
174 
175 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
176 StudyArea_BV_STD400 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "STD", 
"DATA") 
177 StudyArea_BV_STD400.save("StudyArea_BV_STD400") 
178 
179 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
180 StudyArea_BV_STD800 = arcpy.sa.FocalSta�s�cs("StudyArea_BV", neighborhood, "STD", 
"DATA") 
181 StudyArea_BV_STD800.save("StudyArea_BV_STD800") 
182 
183 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
184 StudyArea_BH_Mean50 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "MEAN", 
"DATA") 
185 StudyArea_BH_Mean50.save("StudyArea_BH_Mean50") 
186 
187 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
188 StudyArea_BH_Mean100 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "MEAN", 
"DATA") 
189 StudyArea_BH_Mean100.save("StudyArea_BH_Mean100") 
190 
191 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
192 StudyArea_BH_Mean200 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "MEAN", 
"DATA") 
193 StudyArea_BH_Mean200.save("StudyArea_BH_Mean200") 
194 
195 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
196 StudyArea_BH_Mean400 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "MEAN", 
"DATA") 
197 StudyArea_BH_Mean400.save("StudyArea_BH_Mean400") 
198 
199 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
200 StudyArea_BH_Mean800 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "MEAN", 
"DATA") 
201 StudyArea_BH_Mean800.save("StudyArea_BH_Mean800") 
202 
203 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
204 StudyArea_BH_STD50 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "STD", "DATA" 
) 
205 StudyArea_BH_STD50.save("StudyArea_BH_STD50") 
206 
207 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
208 StudyArea_BH_STD100 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "STD", 
"DATA") 



169 
 

209 StudyArea_BH_STD100.save("StudyArea_BH_STD100") 
210 
211 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
212 StudyArea_BH_STD200 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "STD", 
"DATA") 
213 StudyArea_BH_STD200.save("StudyArea_BH_STD200") 
214 
215 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
216 StudyArea_BH_STD400 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "STD", 
"DATA") 
217 StudyArea_BH_STD400.save("StudyArea_BH_STD400") 
218 
219 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
220 StudyArea_BH_STD800 = arcpy.sa.FocalSta�s�cs("StudyArea_BH", neighborhood, "STD", 
"DATA") 
221 StudyArea_BH_STD800.save("StudyArea_BH_STD800") 
222 
223 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
224 StudyArea_CC_Mean50 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "MEAN", 
"DATA") 
225 StudyArea_CC_Mean50.save("StudyArea_CC_Mean50") 
226 
227 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
228 StudyArea_CC_Mean100 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "MEAN", 
"DATA") 
229 StudyArea_CC_Mean100.save("StudyArea_CC_Mean100") 
230 
231 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
232 StudyArea_CC_Mean200 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "MEAN", 
"DATA") 
233 StudyArea_CC_Mean200.save("StudyArea_CC_Mean200") 
234 
235 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
236 StudyArea_CC_Mean400 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "MEAN", 
"DATA") 
237 StudyArea_CC_Mean400.save("StudyArea_CC_Mean400") 
238 
239 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
240 StudyArea_CC_Mean800 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "MEAN", 
"DATA") 
241 StudyArea_CC_Mean800.save("StudyArea_CC_Mean800") 
242 
243 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
244 StudyArea_CC_STD50 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "STD", "DATA" 
) 
245 StudyArea_CC_STD50.save("StudyArea_CC_STD50") 
246 
247 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
248 StudyArea_CC_STD100 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "STD", 
"DATA") 
249 StudyArea_CC_STD100.save("StudyArea_CC_STD100") 
250 
251 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
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252 StudyArea_CC_STD200 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "STD", 
"DATA") 
253 StudyArea_CC_STD200.save("StudyArea_CC_STD200") 
254 
255 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
256 StudyArea_CC_STD400 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "STD", 
"DATA") 
257 StudyArea_CC_STD400.save("StudyArea_CC_STD400") 
258 
259 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
260 StudyArea_CC_STD800 = arcpy.sa.FocalSta�s�cs("StudyArea_CC", neighborhood, "STD", 
"DATA") 
261 StudyArea_CC_STD800.save("StudyArea_CC_STD800") 
262 
263 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
264 StudyArea_CDM_Mean50 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "MEAN", 
"DATA") 
265 StudyArea_CDM_Mean50.save("StudyArea_CDM_Mean50") 
266 
267 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
268 StudyArea_CDM_Mean100 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "MEAN", 
"DATA") 
269 StudyArea_CDM_Mean100.save("StudyArea_CDM_Mean100") 
270 
271 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
272 StudyArea_CDM_Mean200 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "MEAN", 
"DATA") 
273 StudyArea_CDM_Mean200.save("StudyArea_CDM_Mean200") 
274 
275 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
276 StudyArea_CDM_Mean400 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "MEAN", 
"DATA") 
277 StudyArea_CDM_Mean400.save("StudyArea_CDM_Mean400") 
278 
279 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
280 StudyArea_CDM_Mean800 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "MEAN", 
"DATA") 
281 StudyArea_CDM_Mean800.save("StudyArea_CDM_Mean800") 
282 
283 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
284 StudyArea_CDM_STD50 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "STD", 
"DATA") 
285 StudyArea_CDM_STD50.save("StudyArea_CDM_STD50") 
286 
287 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
288 StudyArea_CDM_STD100 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "STD", 
"DATA") 
289 StudyArea_CDM_STD100.save("StudyArea_CDM_STD100") 
290 
291 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
292 StudyArea_CDM_STD200 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "STD", 
"DATA") 
293 StudyArea_CDM_STD200.save("StudyArea_CDM_STD200") 
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294 
295 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
296 StudyArea_CDM_STD400 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "STD", 
"DATA") 
297 StudyArea_CDM_STD400.save("StudyArea_CDM_STD400") 
298 
299 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
300 StudyArea_CDM_STD800 = arcpy.sa.FocalSta�s�cs("StudyArea_CDM", neighborhood, "STD", 
"DATA") 
301 StudyArea_CDM_STD800.save("StudyArea_CDM_STD800") 
302 
303 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
304 StudyArea_NDVI_Mean50 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "MEAN", 
"DATA") 
305 StudyArea_NDVI_Mean50.save("StudyArea_NDVI_Mean50") 
306 
307 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
308 StudyArea_NDVI_Mean100 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "MEAN", 
"DATA") 
309 StudyArea_NDVI_Mean100.save("StudyArea_NDVI_Mean100") 
310 
311 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
312 StudyArea_NDVI_Mean200 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "MEAN", 
"DATA") 
313 StudyArea_NDVI_Mean200.save("StudyArea_NDVI_Mean200") 
314 
315 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
316 StudyArea_NDVI_Mean400 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "MEAN", 
"DATA") 
317 StudyArea_NDVI_Mean400.save("StudyArea_NDVI_Mean400") 
318 
319 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
320 StudyArea_NDVI_Mean800 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "MEAN", 
"DATA") 
321 StudyArea_NDVI_Mean800.save("StudyArea_NDVI_Mean800") 
322 
323 neighborhood = arcpy.sa.NbrCircle("50", "MAP") 
324 StudyArea_NDVI_STD50 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "STD", 
"DATA") 
325 StudyArea_NDVI_STD50.save("StudyArea_NDVI_STD50") 
326 
327 neighborhood = arcpy.sa.NbrCircle("100", "MAP") 
328 StudyArea_NDVI_STD100 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "STD", 
"DATA") 
329 StudyArea_NDVI_STD100.save("StudyArea_NDVI_STD100") 
330 
331 neighborhood = arcpy.sa.NbrCircle("200", "MAP") 
332 StudyArea_NDVI_STD200 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "STD", 
"DATA") 
333 StudyArea_NDVI_STD200.save("StudyArea_NDVI_STD200") 
334 
335 neighborhood = arcpy.sa.NbrCircle("400", "MAP") 
336 StudyArea_NDVI_STD400 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "STD", 
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"DATA") 
337 StudyArea_NDVI_STD400.save("StudyArea_NDVI_STD400") 
338 
339 neighborhood = arcpy.sa.NbrCircle("800", "MAP") 
340 StudyArea_NDVI_STD800 = arcpy.sa.FocalSta�s�cs("StudyArea_NDVI", neighborhood, "STD", 
"DATA") 
341 StudyArea_NDVI_STD800.save("StudyArea_NDVI_STD800") 
342 
343 arcpy.stats.Forest("PREDICT_RASTER", "StudyArea_A�ernoon", "air_temp", None, None, None, 
344 "StudyArea_BV_Mean50; StudyArea_BV_Mean100; StudyArea_BV_Mean200; 
345 StudyArea_BV_Mean400; StudyArea_BV_Mean800; StudyArea_BH_Mean50; 
346 StudyArea_BH_Mean100; StudyArea_BH_Mean200; StudyArea_BH_Mean400; 
347 StudyArea_BH_Mean800; StudyArea_CC_Mean50; StudyArea_CC_Mean100; 
348 StudyArea_CC_Mean200; StudyArea_CC_Mean400; StudyArea_CC_Mean800; 
349 StudyArea_CDM_Mean50; StudyArea_CDM_Mean100; StudyArea_CDM_Mean200; 
350 StudyArea_CDM_Mean400; StudyArea_CDM_Mean800; StudyArea_NDVI_Mean50; 
351 StudyArea_NDVI_Mean100; StudyArea_NDVI_Mean200; StudyArea_NDVI_Mean400 
; 
352 StudyArea_NDVI_Mean800; StudyArea_BH_STD50; StudyArea_BH_STD100; 
353 StudyArea_BH_STD200; StudyArea_BH_STD400; StudyArea_BH_STD800; 
354 StudyArea_BV_STD50; StudyArea_BV_STD100; StudyArea_BV_STD200; 
355 StudyArea_BV_STD400; StudyArea_BV_STD800; StudyArea_CC_STD50; 
356 StudyArea_CC_STD100; StudyArea_CC_STD200; StudyArea_CC_STD400; 
357 StudyArea_CC_STD800; StudyArea_CDM_STD50; StudyArea_CDM_STD100; 
358 StudyArea_CDM_STD200; StudyArea_CDM_STD400; StudyArea_CDM_STD800; 
359 StudyArea_NDVI_STD50; StudyArea_NDVI_STD100; StudyArea_NDVI_STD200; 
360 StudyArea_NDVI_STD400; StudyArea_NDVI_STD800", 
361 None, None, 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\S 
tudyArea_RF_A�ernoon", None, None, 
362 "StudyArea_BV_Mean50 StudyArea_BV_Mean50; StudyArea_BV_Mean100 
StudyArea_BV_Mean100; 
363 StudyArea_BV_Mean200 StudyArea_BV_Mean200; StudyArea_BV_Mean400 
StudyArea_BV_Mean400; 
364 StudyArea_BV_Mean800 StudyArea_BV_Mean800; StudyArea_BH_Mean50 
StudyArea_BH_Mean50; 
365 StudyArea_BH_Mean100 StudyArea_BH_Mean100; StudyArea_BH_Mean200 
StudyArea_BH_Mean200; 
366 StudyArea_BH_Mean400 StudyArea_BH_Mean400; StudyArea_BH_Mean800 
StudyArea_BH_Mean800; 
367 StudyArea_CC_Mean50 StudyArea_CC_Mean50; StudyArea_CC_Mean100 
StudyArea_CC_Mean100; 
368 StudyArea_CC_Mean200 StudyArea_CC_Mean200; StudyArea_CC_Mean400 
StudyArea_CC_Mean400; 
369 StudyArea_CC_Mean800 StudyArea_CC_Mean800; StudyArea_CDM_Mean50 
StudyArea_CDM_Mean50; 
370 StudyArea_CDM_Mean100 StudyArea_CDM_Mean100; StudyArea_CDM_Mean200 
StudyArea_CDM_Mean200; 
371 StudyArea_CDM_Mean400 StudyArea_CDM_Mean400; StudyArea_CDM_Mean800 
StudyArea_CDM_Mean800; 
372 StudyArea_NDVI_Mean50 StudyArea_NDVI_Mean50; StudyArea_NDVI_Mean100 
StudyArea_NDVI_Mean100; 
373 StudyArea_NDVI_Mean200 StudyArea_NDVI_Mean200; StudyArea_NDVI_Mean400 
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StudyArea_NDVI_Mean400; 
374 StudyArea_NDVI_Mean800 StudyArea_NDVI_Mean800; StudyArea_BH_STD50 
StudyArea_BH_STD50; 
375 StudyArea_BH_STD100 StudyArea_BH_STD100; StudyArea_BH_STD200 
StudyArea_BH_STD200; 
376 StudyArea_BH_STD400 StudyArea_BH_STD400; StudyArea_BH_STD800 
StudyArea_BH_STD800; 
377 StudyArea_BV_STD50 StudyArea_BV_STD50; StudyArea_BV_STD100 
StudyArea_BV_STD100; 
378 StudyArea_BV_STD200 StudyArea_BV_STD200; StudyArea_BV_STD400 
StudyArea_BV_STD400; 
379 StudyArea_BV_STD800 StudyArea_BV_STD800; StudyArea_CC_STD50 
StudyArea_CC_STD50; 
380 StudyArea_CC_STD100 StudyArea_CC_STD100; StudyArea_CC_STD200 
StudyArea_CC_STD200; 
381 StudyArea_CC_STD400 StudyArea_CC_STD400; StudyArea_CC_STD800 
StudyArea_CC_STD800; 
382 StudyArea_CDM_STD50 StudyArea_CDM_STD50; StudyArea_CDM_STD100 
StudyArea_CDM_STD100; 
383 StudyArea_CDM_STD200 StudyArea_CDM_STD200; StudyArea_CDM_STD400 
StudyArea_CDM_STD400; 
384 StudyArea_CDM_STD800 StudyArea_CDM_STD800; StudyArea_NDVI_STD50 
StudyArea_NDVI_STD50; 
385 StudyArea_NDVI_STD100 StudyArea_NDVI_STD100; StudyArea_NDVI_STD200 
StudyArea_NDVI_STD200; 
386 StudyArea_NDVI_STD400 StudyArea_NDVI_STD400; StudyArea_NDVI_STD800 
StudyArea_NDVI_STD800", 
387 None, None, "TRUE", 1000, None, None, 100, None, 30, None, None, 
"FALSE", 1, "FALSE") 
388 
389 arcpy.stats.Forest("PREDICT_RASTER", "StudyArea_Evening", "air_temp", None, None, None, 
390 "StudyArea_BV_Mean50; StudyArea_BV_Mean100; StudyArea_BV_Mean200; 
391 StudyArea_BV_Mean400; StudyArea_BV_Mean800; StudyArea_BH_Mean50; 
392 StudyArea_BH_Mean100; StudyArea_BH_Mean200; StudyArea_BH_Mean400; 
393 StudyArea_BH_Mean800; StudyArea_CC_Mean50; StudyArea_CC_Mean100; 
394 StudyArea_CC_Mean200; StudyArea_CC_Mean400; StudyArea_CC_Mean800; 
395 StudyArea_CDM_Mean50; StudyArea_CDM_Mean100; StudyArea_CDM_Mean200; 
396 StudyArea_CDM_Mean400; StudyArea_CDM_Mean800; StudyArea_NDVI_Mean50; 
397 StudyArea_NDVI_Mean100; StudyArea_NDVI_Mean200; StudyArea_NDVI_Mean400 
; 
398 StudyArea_NDVI_Mean800; StudyArea_BH_STD50; StudyArea_BH_STD100; 
399 StudyArea_BH_STD200; StudyArea_BH_STD400; StudyArea_BH_STD800; 
400 StudyArea_BV_STD50; StudyArea_BV_STD100; StudyArea_BV_STD200; 
401 StudyArea_BV_STD400; StudyArea_BV_STD800; StudyArea_CC_STD50; 
402 StudyArea_CC_STD100; StudyArea_CC_STD200; StudyArea_CC_STD400; 
403 StudyArea_CC_STD800; StudyArea_CDM_STD50; StudyArea_CDM_STD100; 
404 StudyArea_CDM_STD200; StudyArea_CDM_STD400; StudyArea_CDM_STD800; 
405 StudyArea_NDVI_STD50; StudyArea_NDVI_STD100; StudyArea_NDVI_STD200; 
406 StudyArea_NDVI_STD400; StudyArea_NDVI_STD800", 
407 None, None, 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\S 
tudyArea_RF_Evening", None, None, 
408 "StudyArea_BV_Mean50 StudyArea_BV_Mean50; StudyArea_BV_Mean100 
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StudyArea_BV_Mean100; 
409 StudyArea_BV_Mean200 StudyArea_BV_Mean200; StudyArea_BV_Mean400 
StudyArea_BV_Mean400; 
410 StudyArea_BV_Mean800 StudyArea_BV_Mean800; StudyArea_BH_Mean50 
StudyArea_BH_Mean50; 
411 StudyArea_BH_Mean100 StudyArea_BH_Mean100; StudyArea_BH_Mean200 
StudyArea_BH_Mean200; 
412 StudyArea_BH_Mean400 StudyArea_BH_Mean400; StudyArea_BH_Mean800 
StudyArea_BH_Mean800; 
413 StudyArea_CC_Mean50 StudyArea_CC_Mean50; StudyArea_CC_Mean100 
StudyArea_CC_Mean100; 
414 StudyArea_CC_Mean200 StudyArea_CC_Mean200; StudyArea_CC_Mean400 
StudyArea_CC_Mean400; 
415 StudyArea_CC_Mean800 StudyArea_CC_Mean800; StudyArea_CDM_Mean50 
StudyArea_CDM_Mean50; 
416 StudyArea_CDM_Mean100 StudyArea_CDM_Mean100; StudyArea_CDM_Mean200 
StudyArea_CDM_Mean200; 
417 StudyArea_CDM_Mean400 StudyArea_CDM_Mean400; StudyArea_CDM_Mean800 
StudyArea_CDM_Mean800; 
418 StudyArea_NDVI_Mean50 StudyArea_NDVI_Mean50; StudyArea_NDVI_Mean100 
StudyArea_NDVI_Mean100; 
419 StudyArea_NDVI_Mean200 StudyArea_NDVI_Mean200; StudyArea_NDVI_Mean400 
StudyArea_NDVI_Mean400; 
420 StudyArea_NDVI_Mean800 StudyArea_NDVI_Mean800; StudyArea_BH_STD50 
StudyArea_BH_STD50; 
421 StudyArea_BH_STD100 StudyArea_BH_STD100; StudyArea_BH_STD200 
StudyArea_BH_STD200; 
422 StudyArea_BH_STD400 StudyArea_BH_STD400; StudyArea_BH_STD800 
StudyArea_BH_STD800; 
423 StudyArea_BV_STD50 StudyArea_BV_STD50; StudyArea_BV_STD100 
StudyArea_BV_STD100; 
424 StudyArea_BV_STD200 StudyArea_BV_STD200; StudyArea_BV_STD400 
StudyArea_BV_STD400; 
425 StudyArea_BV_STD800 StudyArea_BV_STD800; StudyArea_CC_STD50 
StudyArea_CC_STD50; 
426 StudyArea_CC_STD100 StudyArea_CC_STD100; StudyArea_CC_STD200 
StudyArea_CC_STD200; 
427 StudyArea_CC_STD400 StudyArea_CC_STD400; StudyArea_CC_STD800 
StudyArea_CC_STD800; 
428 StudyArea_CDM_STD50 StudyArea_CDM_STD50; StudyArea_CDM_STD100 
StudyArea_CDM_STD100; 
429 StudyArea_CDM_STD200 StudyArea_CDM_STD200; StudyArea_CDM_STD400 
StudyArea_CDM_STD400; 
430 StudyArea_CDM_STD800 StudyArea_CDM_STD800; StudyArea_NDVI_STD50 
StudyArea_NDVI_STD50; 
431 StudyArea_NDVI_STD100 StudyArea_NDVI_STD100; StudyArea_NDVI_STD200 
StudyArea_NDVI_STD200; 
432 StudyArea_NDVI_STD400 StudyArea_NDVI_STD400; StudyArea_NDVI_STD800 
StudyArea_NDVI_STD800", 
433 None, None, "TRUE", 1000, None, None, 100, None, 30, None, None, 
"FALSE", 1, "FALSE") 
434 
435 arcpy.stats.Forest("PREDICT_RASTER", "StudyArea_Night", "air_temp", 
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None, None, None, 
436 "StudyArea_BV_Mean50; StudyArea_BV_Mean100; StudyArea_BV_Mean200; 
437 StudyArea_BV_Mean400; StudyArea_BV_Mean800; StudyArea_BH_Mean50; 
438 StudyArea_BH_Mean100; StudyArea_BH_Mean200; StudyArea_BH_Mean400; 
439 StudyArea_BH_Mean800; StudyArea_CC_Mean50; StudyArea_CC_Mean100; 
440 StudyArea_CC_Mean200; StudyArea_CC_Mean400; StudyArea_CC_Mean800; 
441 StudyArea_CDM_Mean50; StudyArea_CDM_Mean100; StudyArea_CDM_Mean200; 
442 StudyArea_CDM_Mean400; StudyArea_CDM_Mean800; StudyArea_NDVI_Mean50; 
443 StudyArea_NDVI_Mean100; StudyArea_NDVI_Mean200; StudyArea_NDVI_Mean400 
; 
444 StudyArea_NDVI_Mean800; StudyArea_BH_STD50; StudyArea_BH_STD100; 
445 StudyArea_BH_STD200; StudyArea_BH_STD400; StudyArea_BH_STD800; 
446 StudyArea_BV_STD50; StudyArea_BV_STD100; StudyArea_BV_STD200; 
447 StudyArea_BV_STD400; StudyArea_BV_STD800; StudyArea_CC_STD50; 
448 StudyArea_CC_STD100; StudyArea_CC_STD200; StudyArea_CC_STD400; 
449 StudyArea_CC_STD800; StudyArea_CDM_STD50; StudyArea_CDM_STD100; 
450 StudyArea_CDM_STD200; StudyArea_CDM_STD400; StudyArea_CDM_STD800; 
451 StudyArea_NDVI_STD50; StudyArea_NDVI_STD100; StudyArea_NDVI_STD200; 
452 StudyArea_NDVI_STD400; StudyArea_NDVI_STD800", 
453 None, None, 
r"C:\Users\abbegcc\Documents\ArcGIS\Projects\StudyArea\StudyArea.gdb\S 
tudyArea_RF_Night", None, None, 
454 "StudyArea_BV_Mean50 StudyArea_BV_Mean50; StudyArea_BV_Mean100 
StudyArea_BV_Mean100; 
455 StudyArea_BV_Mean200 StudyArea_BV_Mean200; StudyArea_BV_Mean400 
StudyArea_BV_Mean400; 
456 StudyArea_BV_Mean800 StudyArea_BV_Mean800; StudyArea_BH_Mean50 
StudyArea_BH_Mean50; 
457 StudyArea_BH_Mean100 StudyArea_BH_Mean100; StudyArea_BH_Mean200 
StudyArea_BH_Mean200; 
458 StudyArea_BH_Mean400 StudyArea_BH_Mean400; StudyArea_BH_Mean800 
StudyArea_BH_Mean800; 
459 StudyArea_CC_Mean50 StudyArea_CC_Mean50; StudyArea_CC_Mean100 
StudyArea_CC_Mean100; 
460 StudyArea_CC_Mean200 StudyArea_CC_Mean200; StudyArea_CC_Mean400 
StudyArea_CC_Mean400; 
461 StudyArea_CC_Mean800 StudyArea_CC_Mean800; StudyArea_CDM_Mean50 
StudyArea_CDM_Mean50; 
462 StudyArea_CDM_Mean100 StudyArea_CDM_Mean100; StudyArea_CDM_Mean200 
StudyArea_CDM_Mean200; 
463 StudyArea_CDM_Mean400 StudyArea_CDM_Mean400; StudyArea_CDM_Mean800 
StudyArea_CDM_Mean800; 
464 StudyArea_NDVI_Mean50 StudyArea_NDVI_Mean50; StudyArea_NDVI_Mean100 
StudyArea_NDVI_Mean100; 
465 StudyArea_NDVI_Mean200 StudyArea_NDVI_Mean200; StudyArea_NDVI_Mean400 
StudyArea_NDVI_Mean400; 
466 StudyArea_NDVI_Mean800 StudyArea_NDVI_Mean800; StudyArea_BH_STD50 
StudyArea_BH_STD50; 
467 StudyArea_BH_STD100 StudyArea_BH_STD100; StudyArea_BH_STD200 
StudyArea_BH_STD200; 
468 StudyArea_BH_STD400 StudyArea_BH_STD400; StudyArea_BH_STD800 
StudyArea_BH_STD800; 
469 StudyArea_BV_STD50 StudyArea_BV_STD50; StudyArea_BV_STD100 
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StudyArea_BV_STD100; 
470 StudyArea_BV_STD200 StudyArea_BV_STD200; StudyArea_BV_STD400 
StudyArea_BV_STD400; 
471 StudyArea_BV_STD800 StudyArea_BV_STD800; StudyArea_CC_STD50 
StudyArea_CC_STD50; 
472 StudyArea_CC_STD100 StudyArea_CC_STD100; StudyArea_CC_STD200 
StudyArea_CC_STD200; 
473 StudyArea_CC_STD400 StudyArea_CC_STD400; StudyArea_CC_STD800 
StudyArea_CC_STD800; 
474 StudyArea_CDM_STD50 StudyArea_CDM_STD50; StudyArea_CDM_STD100 
StudyArea_CDM_STD100; 
475 StudyArea_CDM_STD200 StudyArea_CDM_STD200; StudyArea_CDM_STD400 
StudyArea_CDM_STD400; 
476 StudyArea_CDM_STD800 StudyArea_CDM_STD800; StudyArea_NDVI_STD50 
StudyArea_NDVI_STD50; 
477 StudyArea_NDVI_STD100 StudyArea_NDVI_STD100; StudyArea_NDVI_STD200 
StudyArea_NDVI_STD200; 
478 StudyArea_NDVI_STD400 StudyArea_NDVI_STD400; StudyArea_NDVI_STD800 
StudyArea_NDVI_STD800", 
479 None, None, "TRUE", 1000, None, None, 100, None, 30, None, None, 
"FALSE", 1, "FALSE") 


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	Research Problem
	Research Goals, Objectives


	Chapter 2
	Literature Review
	Health and Economic Issues Related to Urban Heat
	History and Advances in Urban Heat Studies
	Literature Review Summary and Context of this Study


	Chapter 3
	Methodology
	Study Area
	Data Acquisition
	Air Temperature Data Collection
	LiDAR Data and Imagery
	Temperature Modelling
	Independent Variables product development through geoprocessing
	Socio-demographic Data and Analysis


	Chapter 4
	Results
	Temperature data collection
	Random Forest Model Results
	Temperature and socio-demographics


	Chapter 5
	Discussions and Conclusions
	Discussion
	Conclusions
	Limitations
	Future Directions


	References
	Appendix A
	Income Linear Regression (TIBCO Spotfire S+ v. 8.2.0)
	Ethnicity Linear Regression (TIBCO Spotfire S+ v. 8.2.0)
	Python Code to Predict Air Temperature Raster Surface


